

Drastically Reducing Specific Water and Energy In Large Industrial Complexes

Presented by Osvaldo A. Bascur

Global MMM Industry Principal

OSIsoft.

JSERS CONFERENCE

The Power of Data CHANGE

THRIVING

IN A

WORLD OF

Agenda

Overview of the Large Industrial Complexes

Sustainability Strategies are good
Business

Real Time Information Integration and Standardization

Endesa, Southern Peru, CAP Acero, ArcelorMittal (Dofasco, CSN)

Overview of the Large Industrial Complexes

PI System in the Metals Industry

Sustainability & Energy/Water Nexus

Summary

- Discuss observations and real examples from industry, utilities and public sector

... Energy & Water are inextricably linked. To one can save the other. Saving both can save money, capacity, and jobs!

How are you managing your Ore Types, Energy, Water and Metals Recoveries?

Electricity consumption in copper concentration (%)

Intensity of electricity consumption

Leaching and SxEw

Water supply projects to desalinate and pump water could require an additional 5.4 TWh per year

Mine to Metals Products

Integration: Rio Tinto Kennecott Utah Copper

Energy and Water Tracking

Energy

Assets

Reagents

Environmental

INTEGRATE- FIND - ANALYZE- DELIVER-VISUALIZE

Sustainability
Strategies are good
business
Basic Guidelines

Overall Integrated Industrial Effectiveness

Results

Opportunities \$

Mr. Porter
Shared VALUE
Strategy for
SUSTAINABILITY

Systems

Emerging market growth will create an additional 11Mtpa of demand by 2024

THE PEOPLE EFFECT Local vs. Collaborative Decision Making

KPI Examples: Production, Quality, Costs, Equipment Availability, Environmental and Safety alerts with fast resolution and improved decision making.

Real Time Information Integration and **Standardization**

PI System Data Infrastructure

Improving the Transformation of Energy Resources into Electricity

The problem...

Weather and Country Energy Limitations

Most Arid Region in the World

Large Energy Requirements

Optimizing Latin American Energy Generation Management

ENDESA Examples

ÁMBITO DE DESARROLLO

SISTEMA INTEGRADO DE INFORMACIÓN DE PROCESO

Es un sistema informático multiusuario que, captura la data de proceso de los sistemas de control de las unidades generadoras y almacena esos datos en servidores de planta, y en un servidor central, permitiendo a los usuarios el acceso a la información en línea y a la base de datos histórica de las plantas generadoras.

SISTEMAS EXPERTOS Y APLICACIONES

Son desarrollos de software que utilizan la información en línea o histórica, procesándola a través de modelos, contadores, informes automáticos y personalizados, pantallas gráficas o tablas de datos.

Southern Peru Copper: Cuajone

- Cuajone
- Production 87,000 MT fine Copper per day.
- Conventional open-pit mine
- Concentrator 10 Grinding Lines.

DISPATCH

(Ultimos datos: 29/11/2001 20:06:39)

31316
5
3
91,1
6
8,9
7,61
4
0,75
0,84
0,09

Datos de mineral de mina al chancador, actualizado por hora.

Tandanaira da las últimas 24 barra. Usass dable aliabarra amaliar

Round-Ti	ро	de re	oca								01/1	2/2001 13	46:55
35000,	ß,	6,	100	-10	70,								H
20000	0.	0	0.	0.									
15:00	17	:00	19:	00	21:00	23:00	1:00	3:00	5:00	7:00	9:00	11:00	,
Leyes Cu	-Au	-Cu	solu	ble							01/1	2/2001 13:	46:56
1,6 1,6	1,					7 7	0 10 0						
0, 0,	0.				0			9			0		
15:00	17	:00	19	00	21:00	23:00	1:00	3:00	5:00	7:00	9:00	11.00	,
Round-D	urez	а-р	H-Me	eteo	nzación	W.					01/1	2/2001 13	46:5
35000,	7	10	6,	-	0			~	0			0	
20000,	0,	5,	0,		•			0 •					
15:00	17	00	19	00	21:00	23:00	1:00	3:00	5:00	7:00	9:00	11:00	

Tipo de roca

Tipo alteración Meteorización/Enriquecimiento

- 3 Pórfiro P3 4 - Pórfim P2
- 1 Potásica fuerte
- 2 Cuarzo-Magnetita
- 5 Pórfiro Los Amerillos 3 - Epidoto-Clorita
- 6-Andesta
- 4 Filica 9 - Andesita Rubble Zone 5 - Argilica
- 1 Suelo residual. Fábrica original, destruida
- 2 Completamente meteorizada alterada. Roca descompuesta y friable
- 3 "Zona de Lixiviación" No visible Pyrita/Calcopinta Alta meteorización/alteración Roca decolorada y de reducida resistencia por meteorización
- 4- "Zona de enriquecimiento" Visible Calcosina/Covelina. Moderada meteorización/alteración Roca decolorada, pero su resistenda poco afectada sob en discontinuidades con meteorización 5 - Suave meteorización/alteración, resistencia inalterada, meteorización solo en diaclasas
- 6 Fresca e inalterada. Alteración puede resultar en una mayor competencia de la roca (ej silicificación).

Dureza de roca

- 1 Roca extremadamente blanda.
- 2 Roca muy blanda
- 3 Roca blanda
- 4 Roca de media a dura
- 5 Roca dura
- 6 Roca muy dura

SIX Sigma PI AF Design Strategy

Strategy for Operational Data Mining

Southern Peru Copper: Cuajone

Sharepoint, PI AF, PI Slicers and PI Cubes Using Latest Power Pivot in Memory technologies

Tangible benefits: Advanced Mine to Mill Integration

- Increase of ore milling: 4.6%
- Decrease of mil power: 3.9%
- Decrease of fresh water consumption: 6.8%

- Net profit: US\$ 31.8 million (period: 2009/04/04 to 2009/12/31
- PI System contribution: US\$ 7.95 million (same period)

CAP Acero Huachipato Steel Mill

Fully Integrated Steel Company
Reduction of Pellets in Blast Furnaces to produce Iron
Steel produced in BOF then casted into Slabs
1.2 Tones of Steel per Year.

Iron and Steel Metallurgical Complex Real Time Information Integration and Standardization

Manufacturing Services Center

Strategy: Standardization of Assets and with Dynamic Contextual Information

Iron and Steel Metallurgical Complex
Real Time Information Integration and

Operational Multidimensional Analysis

Integration of Data, Metrics and Events

Tangible benefits: Instant Power CAP ACERO

Classification of Productive and LOST Times in a Large Metallurgical Complex

	Performance (% time during last shift)										
		Running		Stopped		Down		Maintenance		Problems	
Process Units	%		%		96		%		%		
Batch Annealing	0	.0	0	25.0	0	32.1	0	5.6	0	37.3	
Blast Furnace AH4	0	61.9		28.8	0	2	0	1.3	0	7.9	
Blast Furnace AH5	0	18.5	0	18.8	0	10.2		41.0	0	11.5	
BOF 1	0	13.3	0	25.4	0	20.4	0	29.8	0	11.0	
BOF 2	0	.0	0	25.0	ø	32.1	0	5.6	0	37.3	
Caster 1	0	61.9	0	28.8	ø	.2	Ø	1.3	0	7.9	
Caster 2	•	18.5		18.8	Ø	10.2		41.0	0	11.5	
Caster 3	0	13.3	0	25.4	0	20.4	0	29.8	0	11.0	
Coke Plant 1	0	61.9	0	28.8	0	.2	0	1.3	0	7.9	
Coke Plant 2	0	18.5	0	18.8	0	10.2		41.0	0	11.5	
Cold Reducing	0	13.3	0	25.4	0	20.4	0	29.8	0	11.0	
Electrogalvanizing Line 1	0	.0	0	25.0	0	32.1	0	5.6	0	37.3	
Electrogalvanizing Line 2	0	61.9	0	28.8	0	.2	0	1,3	0	7.9	
Hot Strip Coils	0	18.5	0	18.8	Ø	10.2		41.0	0	11.5	
Hot-Dip Galvenizing	0	13.3	0	25.4	0	20.4		29.8	0	11.0	
Ladle Treatment	0	61.9	0	28.8	0	.2	0	1.3	0	7.9	
Pickling	0	61.9	0	28.8	0		0	1.3	0	7.9	
Sinter Plant	0	13.3	0	25.4	0		_	29.8	0	11.0	
Tempering Hot	0	61.9	0	28.8	O	.2	0	1.3	0	7.9	
Tin Plating	0	18.5	0	18.8	0			41.0	0	11.5	
Welded Pipe	0	13.3	0	25.4	0	Transfer of the last		29.8	0	11.0	

Tangible benefits: 10 % REDUCTION SPECIFIC POWER or US\$ 10 M

US \$ 5.0 millions per year

Tangible benefits: Web Based Air Quality Management for Authorities

Integration: Rio Tinto Kennecott Utah Copper

Energy and Water Tracking

Energy

Assets

Reagents

Environmental

INTEGRATE- FIND - ANALYZE- DELIVER-VISUALIZE

Drastic Energy and Water Savings

- ✓ Dynamic Performance Management Infrastructure with Collaborative Services
- ✓PI Asset Framework standardization and cross-pollination at the local plant and at the Enterprise
- ✓PI Asset Notification using Performance Metrics and Statistical Tools
- ✓ Visibility Using Internet Web Services with standard BI tools.
- ✓ RESULTS: Improvements in sustainability management with large operational cost reductions

Osvaldo Bascur

osvaldo@osisoft.com

Global MMM Industry Principal

OSIsoft, LLC

