

Electric Transmission Flow Monitoring

Presented by

Phil Knight (PG&E), Kevin Bellflower (PG&E), Mike Nettler (PG&E), Greg Dumas (DST Controls)

Constant Maintenance

Equipment Out of Service:

- 2012 approx. 23,000 equipment maintenance outages.
- Average of 63 per day
- Every scheduled outage requires an Engineering study to determine if adjacent equipment is being placed At Risk
- System Dispatch routinely monitors 20 to 40 of these outages per day for overloads
- We already use >50 Tools/Programs

Equipment "At Risk"

Constant Maintenance means that adjacent equipment is being placed "At Risk" of Overload.

Coordinating with CAISO

Today's Process

Spreadsheet Generic Non-Audible Tesla-Tracy 115kV line & Ellis 115kV Tap sect Cleared TE 194628 9/11 Pre-Clearance Requirements - Flow Limit #1 0.65 * Tesla-Tracy 115kV line (-> @ Tracy) 10 **Alarms** 0.84 * Tesla-Shulte #2-115kV line (-> @ Tesla) Limit Mannunciator Tesla-Shulte #1-115kV line (-> @ Tesla) Total -1 MW 178 Pre-Clearance Requirements - Flow Limit #2 2Clearance Alarm 0.59 * Tesla-Tracy 115kV line (-> @ Tracy) 9 7320 (T-133) 47 0.72 * Schulte-Lammers 115kV line (-> @ Schulte) Humboldt 40 Schulte-Manteca 115kV line (-> @ Schulte) Limit Total 97 MW 219 7430 (T-129) Real Time Requirement - Flow Limit #1 7230 (T-165) 0.84 * Tesla-Shulte #2-115kV line (-> @ Tesla) -5 Tesla-Shulte #1-115kV line (-> @ Tesla) 7410 (T-167) Limit Total -11 MW 178 T-126 Real Time Requirement - Flow Limit #2 P6110 0.72 * Schulte-Lammers 115kV line (-> @ Schulte) 47 40 Limit **Donnels-Curtis** Total MW 219 7120 (T-151) T-173 Diablo O-23 PMU Room for error 7240 (T-154)

Additional Challenges

Real Time Requirement - Flow Limit #1

Tesla-Shulte #1-115kV line (-> @ Tesla)

Real Time Requirement - Flow Limit #2

Schulte-Manteca 115kV line (-> @ Schulte)

Static Limits for Dynamic Variables:

- **Temperature**
- Weather
- Time of Day
- Or any other exceptional

condition

More room for Error

Opportunity for Change

The Must haves:

- Dynamic
- Trend
- Audible Alarm
- Standardized
- Repeatable
- Easy to Use and Teach

Reality Check-Who is this Tool for?

Real Time Operations

Real Time Tool:

- Were building as many as 16 per night
- ProcessBook has repeatability limitations when building displays
- This is one of many tasks performed Daily

Dispatchers are **NOT** Display Builders

The Solution – PI Flow Limit Tool

Flow Limit Tool

Limits:

Type, Actual Flow Total, Limit

Flow Limit Information:

Area of Control

Resources Type

Voltage

(Information updates Daily from Outage Database)

Outage Type

Date

 Weather Station info (AF Tables)

 Last updated by: (Time and User ID for version control)

Copy (Rapid outage reproduction)

Limit Screen

Standard Display:

- Real Time Line flows
- Trend with Proximity to alarm
- Staggered Alarm points (Staged at 85%,95% & 100%)
- Mitigation info button

Alarm Annunciator

Standard Display:

- Real Time percentage to alarm
- Staggered Color Coded Alarm points (Staged at 85%,95% & 100%)
- Audible
- Linked to Limit Screen
- Provides Rapid Situational Awareness

From PI AF to PI Screen

Building the Screen

Add-in to ProcessBook

Adding Weather data

Real time weather delivered immediately to dispatchers

Lets see how we did - Results

The Must haves:

- Dynamic
- Trend
- Audible Alarm
- Standardized
- Repeatable
- Easy to Use and Teach

Benefits: Enhanced Situational Awareness

Trends

- Visual Proximity to Limit
- Rapid Situational Assessment

Alarming

- Audible
- Staged 85%,95% & 100%
- Color Coded

Weather

- Real-Time Temperature
- Wind measurements

Data Quality

 Displays EMS quality (Good, Suspect, Replaced or Estimated)

Efficiency

- Reduced Set-up time
- Lower Training Time

Financial

- Accurate implementation of actual limits
- Customer Power Outages are Expensive

Security

- PI is a stable platform (few glitches)
- Equipment 'At Risk' is more secure
- Customer Power Outages

Safety

- Crews working on equipment
- Equipment itself

Contact:

Mike Nettler mnv2@pge.com

Kevin Bellflower krbq@pge.com

Greg Dumas gdumas@dstcontrols.com

Lonnie Bowling lbowling@dstcontrols.com

Chris Georgen Justin Bagley

Joe Reyes Sri Mullapadi

Steve Auradou Kevin Shaffer

Ivan Goodwin **Kevin Cross** Ron Olson

Phil Knight

Tahir Paroo

