

# **WECC Reliability Coordination: Security Baseline and** Configuration Management

Presented by Lyonell D. Keplar Sr. Systems Administrator

## Agenda

- Introduction
- WECC RC PI System Architecture
- Configuration Management
- Developing Security Baselines
- Questions



#### Western Electricity Coordinating Council

- Formed in Response to the Northeast Blackout of 1965
  - 30 Million People and 80,000 Sq. Miles Impacted for 12 Hours
- Founded in 1967 as Western Systems Coordinating Council
  - Merged with two other regional associations in 2002 as WECC
- Headquartered in Salt Lake City, UT
- Exists to assure a reliable bulk electric system in the Western Interconnection

- Largest Regional Entity
   Recognized by NERC and FERC
  - 1.8 Million Sq. Miles
     throughout North America
  - 126,285 Miles of Transmission Lines
  - o 78 Million People



- WECC Reliability Coordination
  - Offices in Vancouver, WA and Loveland, CO
- Provides Situational Awareness and Real-Time Supervision of the Western Interconnection
  - 24x7, 365 days a year
  - Large-scale telemetry data system feeds grid management tools, including the WECC RC PI System
  - Resulting models and tools are used by real-time RC staff to detect events within the Western Interconnection



- WECC RC A Leader in SmartGrid Technology
  - Leading the Western Interconnection Synchrophasor Project
  - \$107.8 million Smart Grid project, funded in part by the Department of Energy under the Smart Grid Investment Grant Program
  - 19 WISP participating entities (including WECC) are installing more than 400 new or upgraded Phasor Measurement Units (PMU) throughout the Western Interconnection
    - PMUs measures magnitude and phase angle of electricity
    - Real-time identification of system vulnerabilities and evolving disturbances
    - "Early Warning" system to help avoid widespread system blackouts



## WECC RC PI System Architecture

- 72 PI Servers in Test and Prod
  - 10 PI ACE Servers
  - 10 PI Asset Framework Servers
  - 32 PI Interface Servers
  - 20 PI Servers
  - 1.7PB of Raw Storage

- 100% Uptime Requirement
  - Four-way redundancy
  - Test environment built identical to production





## WECC RC PI System Architecture

- PI Server Collectives
  - ICCP Telemetry and EMS State Estimator
    - One production collective
    - 549,070 total measurements stored every 10 seconds
    - 1TB storage per year
  - Synchrophasor Telemetry
    - Two production collectives
    - Current Status: 2,000 measurements stored 30/second
    - Goal: 21,600 measurements stored 60/second
    - 60TB storage per year
- Total Telemetry Data
  - Current: 10,968,662,304,000 measurements/year
  - o Goal: 85,141,334,304,000 measurements/year



# WECC RC PI System Architecture

- WECC RC Internet Tools Built on PI System
  - Common Situation Awareness Tools
  - Available to the Western Interconnection







# Configuration Management

- Why do we focus so strongly on configuration management?
  - Small team 17 Staff
    - 8 Person IT Team
    - 9 Person App Support Team
  - Large, complex environment
  - Downtime is not an option!
  - I have no more hair to lose
- How Complex?
  - This is a logical diagram of our test environment



## Configuration Management

- Consistent and Dynamic Change Management
  - Middleware used to track changes to systems automatically
  - o Daily port scans and systems scans used to determine change status
  - Effective automation means changes can be approved rapidly, with confidence that the change will be tracked and managed appropriately



# Configuration Management

- Effective Change Management
  - A good change management process should facilitate implementing change – it shouldn't hinder implementing change
  - You must have a baseline how your systems SHOULD be configured
    - Security settings
    - ACLs and permissions on the system
    - Installed applications, firmware and driver revisions
    - Services available on the system
  - Analyze changes to determine when and what is deviated from your established baseline
    - Analysis of each of the components of your baseline
    - Look for automation in the process manual review can unnecessarily hinder the process



- Our Approach to Security Baselines
  - Don't Reinvent the Wheel
    - Vendors provide tools and documentation
    - Example: Microsoft Security Compliance Manager Toolkit
    - Example: Cisco Network Security Baseline Documentation
  - Risk-Based Assessment
    - Evaluate the risk of each setting
    - Determine risk mitigation, if applicable
  - Document the Settings for Ongoing Assessment
    - Change management: Compare baseline settings before and after changes
    - Use of middleware tools can automate this process
    - Regulated and audited industry? Use vendor documentation as evidence for compliance!



- Microsoft Security Compliance Manager
  - Provides guidance on the security settings available in the Windows operating system
  - Defines recommended policy settings for Windows operating system, both servers and workstations
  - Provides the registry key that implements the setting





#### Ports and Services

- Limit the surface footprint of systems to the minimum required for the system to perform its job function
- PI Database Servers have only one inbound port open to them from workstations (PI Network Manager)
- Review and research vendor documentation to determine the minimum required

Starting Nmap 6.25 (http://nmap.org) Nmap scan report Host is up (0.0010s latency).

PORT STATE SERVICE 5450/tcp open unknown



- Port Scanning Available Services
  - Daily delta scans against established baselines
  - Tools that identify the service based on the response, not just the port and protocol

| NAME                    | SOURCE | SERVICE       | JUSTIFICATION                                                                                                                                                                                                                       | EVIDENCE                               |
|-------------------------|--------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CIFS                    |        | TCP/448       | Provides file share access from<br>networks and<br>networks. Allows file<br>share access, and allows PI services to use<br>the file sharing protocol between PI<br>servers, which is required for PI<br>redundancy hearbeat checks. | Windows Server Port<br>Assignments.pdf |
| ICMP Echo Request       |        | ICMPv4 Type 8 | Provides IOM services (typically utilizing<br>the "ping" or "dig" commands) from internal<br>systems. This is used as a simple method<br>to identify if the system is online and<br>available.                                      | rfc792.pdf                             |
| PI                      |        |               | Provides access to the PI database server, which is used to store time series telemetry data for the environment.                                                                                                                   | PI - KB Article<br>2820OSI8.pdf        |
| PI Notifications        |        |               | Provides failower capability for PI<br>notification services between servers. The<br>notification service provides alarms and<br>event capability to client systems.                                                                | PI - KB Article<br>2820OSI8.pdf        |
| Remote Desktop Protocol |        | TCP/3389      | Frovides remote console access to the<br>server for management and maintenance<br>purposes.                                                                                                                                         | Windows Server Port<br>Assignments.pdf |
| SNMP                    |        | UDP/161       | Provides Simple Network Management Protocol<br>interface for ments monitoring of the<br>system.  Bule is limited to the following Windows<br>program and service:  Program: %SystemBoot%\system31\smmp.exe<br>Service: 3NMP         | rfc3417.pdf                            |
|                         |        |               | Provides access to<br>Agent on system from the<br>management server. Used to<br>monitor changes to the system for change<br>control and security monitoring purposes.                                                               |                                        |





#### **Baseline Policy**

- Contains policy settings common to all systems
- WECC RC baseline defines 497 settings
  - Example: Removable media restriction
- Includes automated middleware application deployments



#### System Type Policy

- Contains policy settings that deviate from the common baseline
  - Example: Enabling 8.3 NTFS name creation
- Contains the host firewall rules for the system type
- System type application deployments



#### References

Microsoft Security Compliance Manager
 <a href="http://technet.microsoft.com/en-us/library/cc677002.aspx">http://technet.microsoft.com/en-us/library/cc677002.aspx</a>

Cisco Network Security Baseline

http://www.cisco.com/en/US/docs/solutions/Enterprise/ Security/Baseline Security/securbase.pdf



## Questions?



#### Lyonell D. Keplar

#### lkeplar@wecc.biz

Sr. Systems Administrator WECC

