

Increasing Efficiency and **Process Safety with PI Notifications** in MOL

Presented by Tibor Komróczki

Agenda

- MOL Group in numbers
- PI System portfolio of MOL Plc.
 - Interlocks
 - E-Flare
 - Technological card
 - Analyzer reliability

MOL Group in numbers

[410] McDONALD'S [411] DANONE [412] MOL [445] BRITISH AMERICAN TOBACCO [467] HEINEKEN

FORTUNE GLOBAL 500

MOL Group Downstream

6 production units

23.5 mtpa refining capacity

2.1 mtpa petrochemicals capacity

>1,900 filling stations

under 8 brands in 11 CEE

370 000 PI Tag capacity

DOMESTIC AND CORE MARKETS

PETROCHEMICAL PLANT

PRODUCT DEPOT

OIL PIPELINE

PETCHEM PIPELINE

ETHYLENE PIPELINE

PI SYSTEM & MOL

PI System portfolio of MOL PLc.2014

Process Information and Automation at MOL

- System administration
- PI Asset Framework
 (PI AF) and PI Notifications
 development and support
- End user, client support
- PI System training for end users
 - PI Clients applications
 - PLAF

Other esponsibilities

- Project development & support
- APC operation
- NICE system (in-house development) support
- Energy monitoring
- Alarm management
- KPI management (SEMAFOR)
- Industrial Network operation
- Loop monitoring
- Operator Training Simulator

15 FTE with Chemical- Electrical - and Computer knowledge

Framework

PI Notifications relationships

Common server network

Direct connection between systems

Reporting of outages

Statistical methods

Continuous process monitoring

Controlling safety via PI System tools

- On-line analyzers
- Interlock
- Flare

- **Notifications**
- Reports
- **Displays**

- Safe operation
- Reduced shut-downs
- Efficiency

INTERLOCKS

Interlock Logbook Migration into Opralog

Information about the switch (name, description)

Information about the status (new state, event time)

Who turned on/off?

Who permitted?

What was the reason?

PI Coresight visualization

Interlock logbook migration into Opralog

PSM monitoring-switched off interlocks

Interlock program benefits

Switched off interlocks more than 1 day	2013 (H2)	2014 (H1)
Pcs.	912	852
Days	26.924	18.434
Total switched off interlocks	2013 (H2)	2014 (H1)
Pcs.	2172	2123
Days	29.668	21.900

	2013 (H1-H2)	2014 (H1)
Interlock relevant events (pcs.)	111	22
Unit shutdowns due to interlocks (pcs.)*	11	0

*2013/11 pcs. shutdowns = 84 lost operation hours
Calculated loss based

on EDC is **1.000.000€**

EDC: Equivalent Distillation Capacity – Solomon study

E-FLARE

Flaring problems at Danube Refinery

In 2013 Danube Refinery burned 22 kt gas during normal operation, which total cost was 4.5M EUR

According to the Refinery roadmap goal this has to be reduced to zero until 2018

Aim of the project to reduce the losses via full PDCA cycle establishment – 2014 Q2 result is 8kt

MOL initiated E-flare program, which uses PI Client tools and Opralog E-logbook application to record flaring activities

Planned and on-going actions

Identify all flaring activities

Implement E-flare report with PI Notifications

Optimize flare gas recovery compressors operation

Investigate root causes of detected flaring

Ensure attentive drainage of spray catchers

Reduce pressure of expansion tanks

Revise refinery plan, with special attention to those units that consume or produce fuel gas

Example

PI ProcessBook Element Relative Display

TECHNOLOGICAL CARD

Technological card

Operational mode: 16

Description	Tag name	EU	Specification	Actual value

Feed

Processing maximum	AFQ005	t/h m3/h	171 212	123,01
Water content of feed	labor	m%	max. 3	0,05

Electric desalter No. 196

Inlet temperature	AT215	့င	max. 150	110,32
Pressure in desalters	SPCHL011	barg	max. 16	9,20

Pre-distillation column No. 101

Head temperature	ATC002	°C	50-130	86,85	
Inlet temperature	AT177/178	°C	120-200	170,21	164,17
Outlet temperature of red. crude oil	AT171	°C	min. 100	156,51	
Head pressure	APCH008	barg	0,5-4,0	1,51	

Atmospheric heater No. 107

Inlet pressure	AP010/011	barg	max. 14,0	6,60	6,35
Outlet temperature	ATC004/005	င္	260-330	286,16	286,33

Collect and monitor the most important parameters of the units to control operation and ensure safety and efficiency.

Limit settings are always declared in the official technological regulations

Technological card parameters were visualized in PI ProcessBook before PI AF and Opralog solution

Technological card

Technological card parameter definition in PI AF level

Data storage in PI Server level

PI AF Technological card limit data evaluation

PI AF & Opralog connection via Web service

Opralog notification about Technological cards' entries

Technological card / PI AF

Current, actual value of the parameters

Description: Equipment name in Opralog (E.g.Column 1/106)

HI / LO Limits

Name: PI Tag (E.g.DAV2CFN1308)

Logbbook_ID : Opralog shift logbook identifier

Parameter type (E.g. :Quantity)

Is operating - value is 1 in case of normal operation of the unit

PI AF & Opralog notifications

Technological card deviations

ANALYZERS RELIABILITY

ARGUS - Analyzer Reliability

Continuous validation of process analyzers

Western electric patterns

Common platform for laboratory and process data

Measurement accuracy

Trend tracking

ARGUS Notification

Business results

Reliability - productivity

Operational availability

One version of truth

Measurement accuracy

Quality control

SUMMARY

"One who is on the alert avoids danger even if one feels safe."

- Process Safety Problems
- Gaps in refinery safety management system
- Risk management problems
- Improper communication lack of user-friendly reporting system

- Process Safety
 Solutions
- Suitable alarm & notification management
- Sufficient process
 overview applying PI Client
 applications
- Safety reports and audits

- Process Safety Support
- PI Coresight
- PI Asset Framework
- PI ProcessBook
- PI Notifications
- PI Event Frames
- PI DataLink

Tibor Komróczki

- tkomroczki@mol.hu
- Head of Process Information and Automation
- MOL, PLC

Questions

Please wait for the microphone before asking your questions

State your name & company

THANK
YOU

Please don't forget to...

Complete the online survey for this session eventmobi.com/emeauc14

Share with your friends

#UC2014

