

Big Data Analytics and Real Time Data Awareness at CECRE (Control Center for Renewable Energies)

Presented by Alberto Gil

Index

- 1 Red Eléctrica de España (REE)
- **Output** CECOEL: Electrical Control Center
- **3** CECRE: Control Center for Renewable Energies
- 4 Operational Data analysis combining PI System and R
- **5** Conclusions and Next Steps

1 Red Eléctrica de España (REE)

1 Red Eléctrica de España (REE)

System Operation:

 Operates the grid and coordinates its uses with the generation facilities in order to ensure the security and continuity of the electricity supply.

Transmission (since 2007 as exclusive transmission company):

- □ The <u>development</u> and the <u>maintenance</u> of the transmission facilities
- □ ~ 41,000 km of lines and 78,000 MW of transforming capacity

CECOEL: Electrical Control Center

2 CECOEL: Electrical Control Center

- Control Centres' permanent availability
- Two Control Centres with symmetrical backup capability
- Redundancy of computer equipment, telecommunication and electrical supply in each Control Centre

CECOEL: Installed Generation Capacity September 2014 - 100 GW

CECOEL: Real Time Data

Every telemetry is linked point to point

EMS System

Observability: 47 000 analog and 223 000 digital telemetries updated in less than 12 s

Controlability: 40 000 remote control signals

More than 2.5 billion data values every day

23.000 telemetries available for retrieving using PI System

3 CECRE: Control Center for Renewable Energies

3 CECRE: Control Center for Renewable Energies

CECRE: Structure of the accumulated net generation 2014 (*)

	GWh				
Wind	35.296			∑ Renewal	ble Energy≈ 46%
Solar PV	5.693		Pumping Generation		
Solar CSP	4.087	Fuel-Gas 0,0% _	1,5%		
Hydro-power	24.525	Combined cycle	Non Conventional Thermal	Wind	
Hydro-power Non Conventional	5.116	7,4%	9,9%	20,8%	Solar PV
Renewable thermal	3.124				3,4% Solar CSP
Nuclear	35.887				2,4%
Coal	23.859	Coal _/ 14,1%			
Combined cycle	12.611	14,170			
Fuel	0		Nuclear		
Thermical no Renewable	16.814		21,2%		Hydro-power Conventional
Hydro pump	2.607				14,5%
GENERATION	169.619			Renewable Thermal	— Hydro-power Non Conventional
		∑ Energy without CO ₂ emissions ≈ 67%		1,8%	3,0%

(*) Provisional data-January .. August 2014

3 CECRE: Renewable demand coverage

Hours with renewable and co2-free demand coverage over 50% (2013)

3 CECRE: Variability

3 CECRE: Outcome of CSP Plants depending on technology

3 CECRE: Observability

Real Time Photovoltaic Generation

3 CECRE: Control Center for Renewable Energies

- 3 000 generation installations
- 37 generation control centers
- 350 distribution operators
- Communication is needed in case of emergency, outages or maintenance

CECRE: Controllability

SECURITY ANALYSIS USING A REAL TIME WIND SCENARIO

18

3 CECRE: Controllability

4 Data analysis combining PI System and R

R Programming (

- R is a <u>free</u> software programming language and software environment for statistical computing and graphics.
- The R language is widely used among statisticians and data miners for developing statistical software and data analysis.
 - Effective data handling
 - A suite of operators for arrays and matrices
 - Graphical facilities for data analysis and display
 - A well-developed, simple and effective programming language

Combining PI System with R

Possible Architectures

• Monitoring Electrical variables and Power Generation in real time

Real Time Power flows in the Transmission Grid

Real Time Wind Power Generation

R Packages required:

- Rmaps.r
- Ggmaps.r
- Akima.r

Historical Analysis of Electrical Variables

Frequency Analysis

Distribution of frequency values with 1-minute sampled

Area Control Error (ACE) Analysis

Daily Distribution of the Area Control Error (ACE)

R Packages required:

GGplot

Automatic report generation

4

Operational Data analysis combining PI System and R

 Renewable Energy Curtailment analysis application using PI System, R and Shiny

5 Conclusions and Next Steps

5 Conclusions and Next Steps

- ◆ Real time data awareness: 2.5 billion telemetries every day.
- PI System is a powerful tool for:
 - Retrieving both real time and historical data values.
 - Monitoring at the electrical control center.
 - Advanced data processing: PI System supports standard programming languages.
- ◆ Combining PI System and R programming allows more powerful way to analyze data

5 Conclusions and Next Steps

- ◆ Future steps using PI DataLink & R approach:
 - ◆ Implementing more efficient architectures to link PI DataLink and R (R.net /PI Web Services) in order to speed up even more retrieving and data analysis.
 - Implementing this approach to other existing analysis tools used in the control centre.
 - Development new tools for System Operation using this approach (voltage control, calculation of running reserves, processing structural information of both conventional and renewable generation).

Big Data Analytics and Real Time Data Awareness at CECRE

Business Challenge

 Management and analysis of big data for Electrical System Operation.

Solution

- Implementing PI DataLink, for easy data handling.
- Combining PI DataLink with R programming for complex statistical analysis of large amount of data.

Results and Benefits

- Better operational tools for system operation analysis.
- Alternative real time and historical graphical representation.

Alberto Gil

- algil@ree.es
- Electrical Control Center Department
- REE

Questions

Please wait for the microphone before asking your questions

State your name & company

THANK
Y()

Please don't forget to...

Complete the online survey for this session eventmobi.com/emeauc14

Share with your friends

#UC2014

