

Leveraging **Technology to** Optimise **Operations and** Maintenance

Presented by Henrico van Niekerk – Meridian Energy David Barker – Dimension Software

meridian

OSIsoft. PI SYSTEM ROADSHOW 2014

- New Zealand-based power generation company
- 7 hydro power stations (over 2GW total)
- 5 wind farm power stations in NZ
- 2 wind farm power stations in AUS
- Had PI for hydro sites since late 1990's
- Two Vestas and two Siemens sites in PI
- 174 turbines

Project Overview

- Give us more information!
- PI for Wind
 - Central one stop shop for data from multiple sources
 - Scale over multiple wind farms
 - Backfill historical data
 - Integrate with existing hydro data
 - Graphical User Interface
 - Information available
 - Correlate data

Our Requirements

- Storing and downloading data
- Analysing events
- Monitoring components
- Reporting on KPIs.

Drivers and Goals for the Project

- Predict component faults, giving suitable lead times before failure
- Prevent component faults, through the identification and implementation of plant Engineering changes
- Improve turbine efficiency.
- Displays to make the information easier to understand.

Q

This Site 📼

> Latest 10 alarms:

TUK

TAP

WWD

WHL

Code	From	То	Station	Description	Alarm Type	Group
393	04/03/2013 12:26:09		TAP48	Vibration TAC84	Alarm	Overspeed or Overproduction
393	04/03/2013 12:14:41		TAP49	Vibration TAC84	Alarm	Overspeed or Overproduction
393	04/03/2013 12:09:12	04/03/2013 12:14:27	TAP22	Vibration TAC84	Alarm	Overspeed or Overproduction
10105	04/03/2013 11:57:43	04/03/2013 12:07:06	WWD604	Stopped, untwisting cables	Alarm	Yaw System
7111	04/03/2013 11:45:29	04/03/2013 11:45:53	WWD409	Hyd. for crane/cover activated	Alarm	Hydraulic System

POWER PRODUCTION

^Turbines

28

55

62

29

Available

28

54

56

Running

28

50

29

TE UKU	61.1 MW
REACTIVE POWER:	-7.4 MVAr
WIND SPEED:	12.7 m/s
TE APITI	72.9 MW
REACTIVE POWER:	-1.9 MVAr
WIND SPEED:	7.5 m/s
WEST WIND	8.3 MW
REACTIVE POWER:	3.6 MVAr
WIND SPEED:	4.8 m/s
WHITE HILL	49.5 MW
REACTIVE POWER:	-0.7 MVAr

Menuel Peser

0

0

4 un aleser

3

0

2

0

Service Mode

0

1

0

0

5

0

>

No Connes

WIND SPEED:

w

18:00 21:00 00:00 03:00 06:00 09:00 12:00 TIME

OSIsoft. PI SYSTEM ROADSHOW 2014

(C) Copyright 2014, OSIsoft, LLC.

4/03/2013 14:13:45

> Latest 10 alarms:

Code	From	То	Station	Description	Alarm Type	Group
7111	04/03/2013 11:18:30	04/03/2013 11:18:41	TUK321	Hyd. for crane/cover activated	Alarm	Hydraulic System
1001	04/03/2013 11:17:41	04/03/2013 11:27:13	TUK321	Manual stop	Alarm	Manual Command
1015	04/03/2013 11:16:40	04/03/2013 11:27:07	TUK321	Manual idle stop	Alarm	Manual Command
7111	04/03/2013 11:04:48	04/03/2013 11:04:57	TUK321	Hyd. for crane/cover activated	Alarm	Hydraulic System
1001	04/03/2013 10:57:13	04/03/2013 11:10:06	TUK321	Manual stop	Alarm	Manual Command

.....

Ŧ

.

Latest 10 alarms:

Code	From	То	Station	Description	Alarm Type	Group
10105	03/03/2013 11:14:12	03/03/2013 11:23:26	TUK101	Stopped, untwisting cables	Alarm	Yaw System
5122	01/03/2013 13:24:10	01/03/2013 13:24:10	TUK101	FRT detected by grid module	Warning	Grid
1015	28/02/2013 11:39:58	28/02/2013 12:12:46	TUK101	Manual idle stop	Alarm	Manual Command
1005	28/02/2013 11:39:58	28/02/2013 12:12:47	TUK101	Availability - low wind	Warning	Manual Command
7111	28/02/2013 11:08:44	28/02/2013 11:09:15	TUK101	Hyd. for crane/cover activated	Alarm	Hydraulic System

ш

Ŧ

> Latest Alarms

OSIsoft. PI SYSTEM ROADSHOW 2014

IMS Rot End:

37 °C

Handover

OSIsoft. PI SYSTEM ROADSHOW 2014

About Dimension Software

- Auckland based team of five.
- Specialist PI Systems Integrator providing advanced solutions including:
 - Design and project management
 - PI end to end
 - Software development
 - Analytical engines
 - Bespoke development
 - Customised training

Technical Overview

- Project involved a mixture of off the shelf components and custom software development
- Spread over a one year period
- Data is **centrally stored** in HA PI servers
- Interfaces collect:
 - **Real-time** data from Siemens & Vestas OPC servers
 - **10 minute** data from site SQL database servers
 - Alarm and events from site SQL database servers
 - Station services PLC via DNP3 serial
- Additional 68,000 tags

Architecture

Interface Nodes

DNP3 via

s erial

Station Services PLC

OSIsoft. PI SYSTEM ROADSHOW 2014

x 2

Vendor

Database Server:

Central Applications

- Central ACE application **collects**:
 - Forecast wind speed from MetService
 - Historic, current and forecast electricity prices from the market
- Used PI OLEDB COM connector to store forecast data which integrates into PI tags.

Central Applications

- Central ACE applications calculate:
 - Potential power based on capability curve (stored in AF tables)
 - Actual and forecast revenue

	WWD	TUK	TAP	WHL
Current \$/MWh:	\$422.74	\$400.60	\$417.41	\$443.69
Current Output:	16.1 MW	29.2 MW	0.4 MW	4.1 MW
Current Revenue Per Hour:	\$6,810.72	\$11,686.14	\$174.85	\$1,815.98
Current Wind Speed:	5.60 m/s	11.50 m/s	2.90 m/s	2.10 m/s

User Access, Backfill

- All corporate users can access the live and historic data via SharePoint, ProcessBook and Excel.
- All historical data **backfilled** starting from 2004 onwards. Included:
 - MS Access
 - MS SQL time series data
 - MS SQL Alarms and Events.

Done via small utilities which directly push to PI via PI-SDK

Asset Framework

- Data organised in an extensive **Asset Framework** database
- Wind turbines are good candidates for AF templates
- 1400 elements
- Calculations and displays are driven by the AF templates.
- Scale as new turbines are added.

OSIsoft. PI SYSTEM ROADSHOW 2014

Asset Framework

Filter			
	/ ! 🗉	Name A	Value
		I ActivePower	612
Ð		🗉 Brake	
Ð	•	🗉 Digitals	
	T	🗉 DisplayName	http://TWZPIWEB2/Shared%;
B . .	T	E Pressures	
		🛛 🍼 AfterInlineFilter_Max	5.5
	6	AfterInlineFilter_Max_LastWeek	8.8000001907348633
	6	🛛 🍼 AfterInlineFilter_Mean	5.4984498023986816
	6	🛛 🍼 AfterInlineFilter_Min	5.4000000953674316
	6	AfterInlineFilter_Min_LastWeek	0
	6	🛛 🍼 BeforeInlineFilter_Max	5.6999998092651367
	6	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	8.8999996185302734
	6	🛛 🍼 BeforeInlineFilter_Mean	5.6118597984313965
	6	🛚 🍼 BeforeInlineFilter_Min	5.5999999046325684
	6	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	0
	6	🛚 🍼 GearOilPressure _Max	2
	6	🛚 🍼 GearOilPressure _Max_LastWeek	3
		🛚 🍼 GearOilPressure _Mean	1.9847350120544434
		🛚 🍼 GearOilPressure _Min	1.8999999761581421
		🛛 🍼 GearOilPressure _Min_LastWeek	-0.10000000149011612
Ð	Ī	🗉 Settings	
-		Temperatures	
			F0.

Visuals

- Central SharePoint portal driven by AF
- Graphics targeted from top level down to individual components
- Developed context aware Alarm and Event webpart
- Health monitoring
- Asset Framework ties together PI data, context for AE data, SharePoint navigation, ACE calculation configuration

Technical Challenges Faced

- Ensuring **security** requirements met when connecting to the station PLCs.
- Tag naming conventions
- Deciding on consistent asset **structure**
- **SharePoint** integration
- Coordinating multiple **vendors**

OSIsoft. PI SYSTEM ROADSHOW 2014

Handover

OSIsoft. PI SYSTEM ROADSHOW 2014

Outcomes

• Engineering Investigations

OSIsoft. PI SYSTEM ROADSHOW 2014

1	A	В	С	D	E	F	G	Н	1	J	K	L
1		Ν	/laximum					Std Deviatio	n			
2			1/01/2010 1	/01/2011	1/01/2012	1/01/2013		1/01/2010	1/01/2011	1/01/2012	1/01/2013	
3		ANALOG:WWD101MDA10CP1640MA	250	266	250		ANALOG:WWD101MDA10CP1642SD	2.41099232	2.144680311	2.152640315		1
4		ANALOG:WWD101MDA10CP1644MA	247	264	245		ANALOG:WWD101MDA10CP1646SD	2.82844737	2.631015353	2.642463412		1
5		ANALOG:WWD101MDA10CP1648MA	250	266	247	266	ANALOG:WWD101MDA10CP1650SD	2.79871567	2.554955443	2.599589716	2.5292778	1
6		ANALOG:WWD102MDA10CP1640MA	253	254	255		ANALOG:WWD102MDA10CP1642SD	2.87026919	2.64596948	2.599052301		1
7		ANALOG:WWD102MDA10CP1644MA	253	254	255		ANALOG:WWD102MDA10CP1646SD	2.78067869	2.54455426	2.498072056		1
8		ANALOG:WWD102MDA10CP1648MA	252	253	254	255	ANALOG:WWD102MDA10CP1650SD	2.90020582	2.683574548	2.662047789	2.6871582	1
9		ANALOG:WWD103MDA10CP1640MA	252	251	268		ANALOG:WWD103MDA10CP1642SD	2.27925532	2.376152591	3.060500714		1
10		ANALOG:WWD103MDA10CP1644MA	254	252	270		ANALOG:WWD103MDA10CP1646SD	2.28364991	2.386859499	3.085535906		1
11		ANALOG:WWD103MDA10CP1648MA	253	251	269	270	ANALOG:WWD103MDA10CP1650SD	2.25895022	2.349715012	3.043315116	2.569326	1
12		ANALOG:WWD104MDA10CP1640MA	253	252	253		ANALOG:WWD104MDA10CP1642SD	2.30555259	2.113065273	1.98572106		1
13		ANALOG:WWD104MDA10CP1644MA	254	·				0.00000400		1.00040.00		
14		ANALOG:WWD104MDA10CP1648MA	255			Tu	rbine Pressure Values (sorted b	v turbine	e #)		
15		ANALOG:WWD105MDA10CP1640MA	252					oor cours	,			
16		ANALOG:WWD105MDA10CP1644MA	252	27						1		
17		ANALOG:WWD105MDA10CP1648MA	252	26	5					o	.9	
18		ANALOG:WWD106MDA10CP1640MA	252									
19		ANALOG:WWD106MDA10CP1644MA	253	26	0					0	.8	
20		ANALOG:WWD106MDA10CP1648MA	252	25	5						.7	
21		ANALOG:WWD107MDA10CP1640MA	257									
22		ANALOG:WWD107MDA10CP1644MA	258	25 g	0					0	.6 Plus Std	1
23		ANALOG:WWD107MDA10CP1648MA	257	: 24	5						.5 Minus S	Std : /
24		ANALOG:WWD108MDA10CP1640MA	253	Pre								
25		ANALOG:WWD108MDA10CP1644MA	253	24	0					0	.4 Damage	20
26		ANALOG:WWD108MDA10CP1648MA	253	23	5					0	Average	e j
27		ANALOG:WWD109MDA10CP1640MA	264								- Max	
28		ANALOG:WWD109MDA10CP1644MA	267	23	0		****	* • • • • • • • •	++++++++	• • • • • • • • • •	.2	
29		ANALOG:WWD109MDA10CP1648MA	267	22	5						1	
30		ANALOG:WWD110MDA10CP1640MA	251									
31		ANALOG:WWD110MDA10CP1644MA	251	22								
32		ANALOG:WWD110MDA10CP1648MA	251		00000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	0004400000		000000000000000000000000000000000000000		
33		ANALOG:WWD201MDA10CP1640MA	253				Turbine Number					
34		ANALOG:WWD201MDA10CP1644MA	252	1 2007	2.12			FIGLOGIDOD	FITEO200210	ERODOTTOET		
35		ANALOG:WWD201MDA10CP1648MA	254	259	251	259	ANALOG:WWD201MDA10CP1650SD	2.24102104	1.947820088	1.986283952	2.1246444	1

Outcomes

- Engineering Investigations
- Overview of Wind

OSIsoft. PI SYSTEM ROADSHOW 2014

Outcomes

- Engineering Investigations
- Overview of Wind
- Root Cause Analysis

<u>File Edit View Insert Tools Debug Desktop Window H</u>elp TimeAxis

1) 🖆 🛃 🎍 🔌 🔍 🔍 🗐 🐙 🔏 • 🛃 🔲 📰 💷 🛄

OSIsoft. PI SYSTEM ROADSHOW 2014

_ 0 _ X

XSK

Outcomes

- Engineering Investigations
- Overview of Wind
- Root Cause Analysis
- Operations and Maintenance Planning

meridian

Home Hydro Wind

Plant Information Portal > Shared Documents > WindFarmsPotentialRevenueOverview

	WWD	тик	TAP	WHL
Current \$/MWh:	\$422.74	\$400.60	\$417.41	\$443.69
Current Output:	16.1 MW	29.2 MW	0.4 MW	4.1 MW
Current Revenue Per Hour:	\$6,810.72	\$11,686.14	\$174.85	\$1,815.98
Current Wind Speed:	5.60 m/s	11.50 m/s	2.90 m/s	2.10 m/s

Project Challenges Faced

- Justifying that more information will make money
- Interaction between teams to get things done
- Spread of the project team
- What don't we know?

Next Steps

- Reporting
 - KPIs
 - Standard Reports
 - Site Managers
 - Reliability Reports
- Additional Analysis Methods
 - All sites in Matlab
- Benchmarking

PI system for Wind - Wind Conference 2013

"...A very sexy solution. I think this is better than X-box"

Australian Wind Farm owner and operator.

Business Challenge

 Obtaining the necessary information to own and operate our own wind farms

Solution

Purpose built PI for Wind system by Dimension Software

Results and Benefits

- Detailed Engineering Investigations and Outcomes now possible
- Multi functional displays viewed across the business

Henrico van Niekerk

- Henrico.vanniekerk@meridianenergy.co.nz
- Reliability Engineer
- Meridian Energy Ltd

David Barker

- David@dimensionsoftware.co.nz
- Managing Director
- Dimension Software Ltd

THANK YOU

OSIsoft. PI SYSTEM ROADSHOW 2014