

Decision Support System for Online Operations & Maintenance in Power Plants

Presented by Mr. G.S. Rao, CIO, KSK Energy Ventures
Mr. Abhay Nalawade, MD, EcoAxis

About KSK

- KSK Energy Ventures Limited listed on: NSE/ BSE
- Parent Company: KSK Power Venture plc listed on: LSE

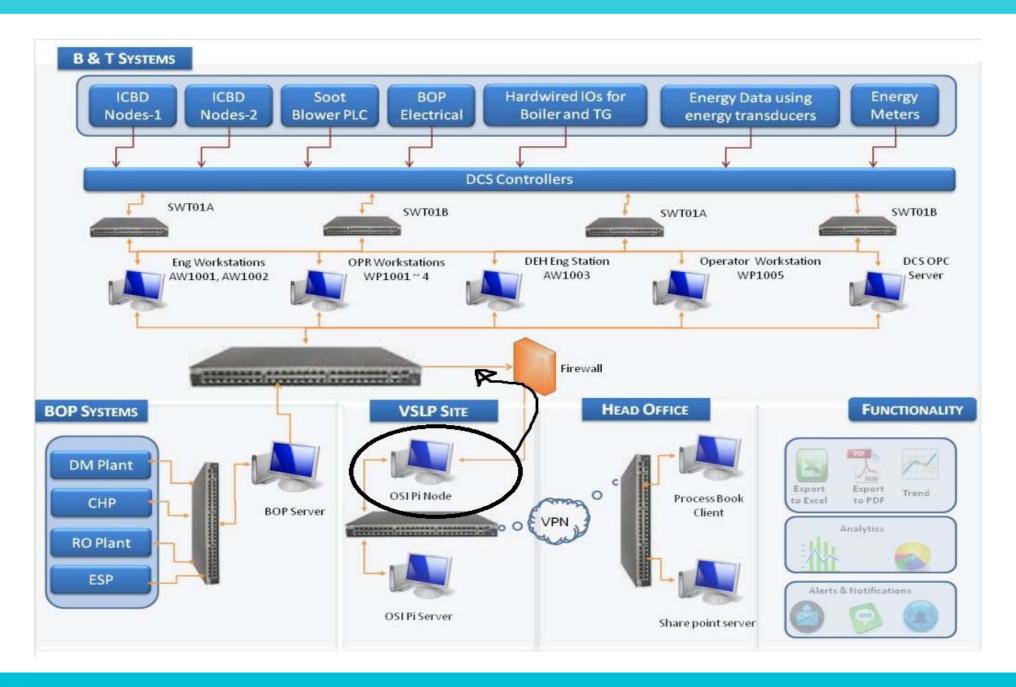
Track record:

- Pioneering work on: Green field power plant development since 2002
- Captive power, merchant power, renewable power
- Power plants operational: 2,062 MW
- Under construction: 2,400 MW

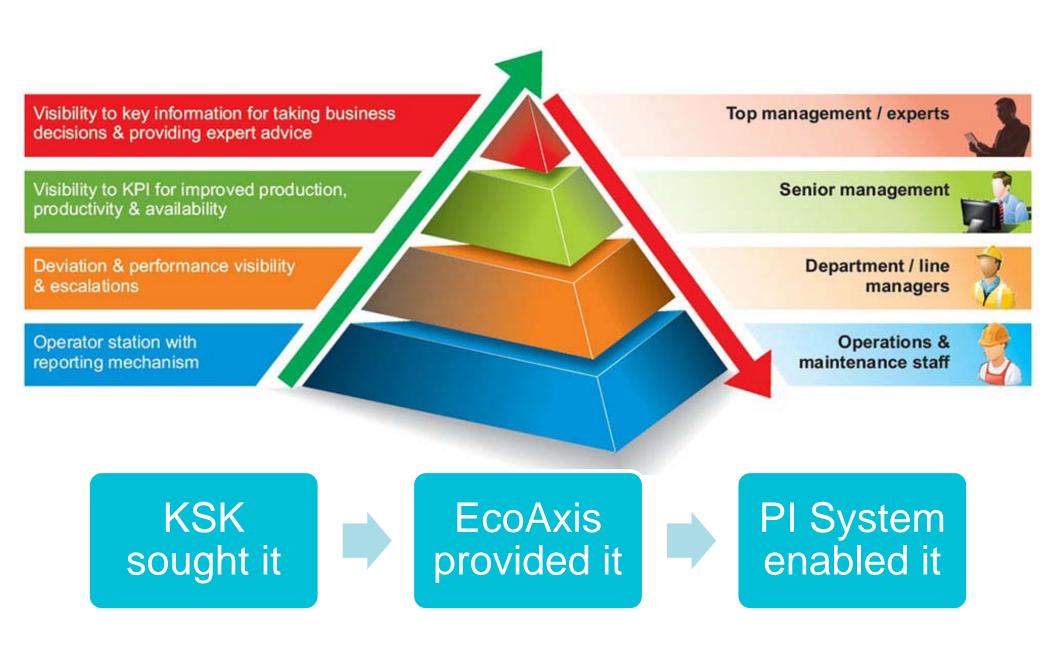
Approach to Execution & Management:

- All plants executed on "EPC" contract basis
- All plants O&M is outsourced
- Corporate Management controls ops from Hyderabad Corp. Office

Business Challenges


- Multiple plants (43 MW to 600 MW), multi-location, multiple types (FBC, CFBC, Pulverized fuel) coal, lignite, gas fired units, with multiple vendors
- Fully outsourced O&M
- All plants needed to be controlled with experienced experts centrally available from Corporate Office

Effective centralized monitoring was a must!

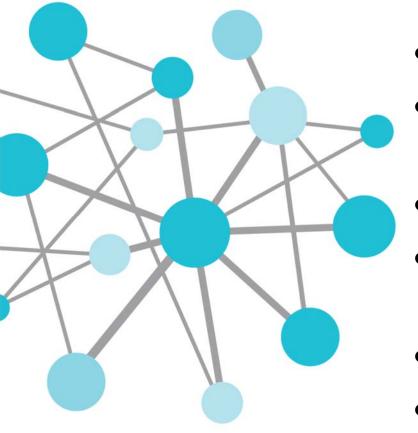

Management Objectives

- Ensure asset optimization
- Obtain high availability & capacity utilization
- Achieve best heat rate and efficiency
- Reduce heat loss
- Minimize cost of O & M
- Implement load-based monitoring & effectively manage demand/supply
- Get reports "on-the-fly" for timely decisions & free manpower engaged on MIS work!

Network Infrastructure

Integrated Decision Support System

How was it done...


- Picking the brains (most critical step)
- Connecting dots (building solution)
- OSIsoft products & solutions employed
- Time taken
 - 60% for planning and requirement gathering
 - 40% for development & implementation

Picking the brains user groups

- Understanding management objectives
- Site discussions for process mapping
- Role functionality mapping
- Brainstorming & detailing to decide on information needs for each role, to meet end objectives
- Requirement specification document covering, dashboard / MIS report contents, layouts, business logic, visualization, user usability

Connecting the dots solution building

- Solution detailing on shop floor
- Data sources identified & parameter crystallized for analytics
- Additional instrumentation installed
- Data acquisition system and PI connectors firmed up
- Networking backbone created
- Installed server infrastructure:
 OPC, database, AF
- Security ensured: firewall between control and business network

OSIsoft Product & Services Employed

- PI Interface for OPC DA
- PI Interface for ModBus Ethernet
- PI ODBC Client
- PI OLEDB Provider
- PI Web services
- PI System Management Tools
- PI ACE (Advanced Computing Engine)
- PI Coresight
- PI Webparts

- PLAF
- PI Server
- PI Notifications
- OSIsoft **vCampus**
- OSIsoft Users Community

Other tools:

- .NET Development
- Microsoft Share point
- Adobe Flex visualization framework
- MS SQL

What got delivered...

- Integrated web portal
- Anytime anywhere dashboard
- Role based dashboard
- Customized role based reports
- Remote graphics for trouble shooting
- Desktop alerts, SMS/email notifications
- Information on smart devices

....Finally data to decisions

Web Portal of 135 MW Plant

VS Lignite Power Plant

Online Operations & Maintenance System

LOGIN

About OOMS:

- High availability & efficient performance are key needs to achieve quick ROI for capital-intensive power plants.
 Conventional approach of reactive maintenance & trouble shooting with experts stationed at site, fall woefully short of meeting these objectives.
- Using machine-to-machine (M2M) technology makes it possible to meet these objectives and much more...
- Such On-line Operation & Maintenance System (OOMS) enables critical parameter data capture in real time from control systems(DCS, PLCs, Smart Meters). The 'big data' acquired is then used to generate alerts, reports & dashboards, enabling plant personnel, operations management and experts to achieve high relibility and improved plant performance. Simultaneously it provides top management vital inputs for decision making anywhere, anytime.

/ c

OOMS

Milest

2 Highlig

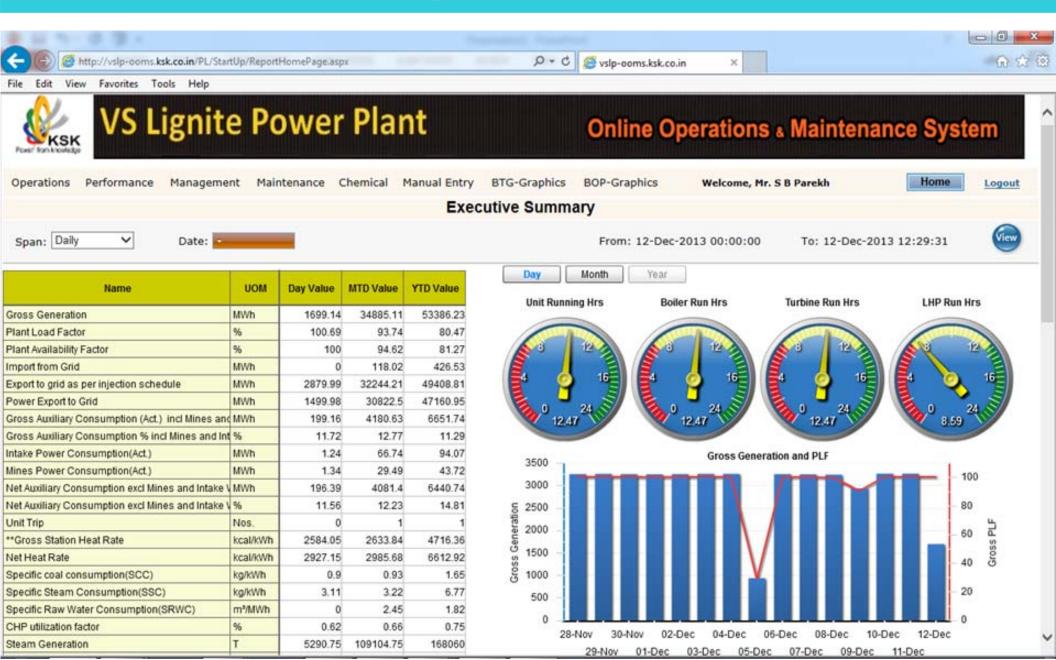
more.

135 MW

Captive fuel

Lignite fired CFBC

Capacity 450 TPH / 135 ATA


Anytime Anywhere Dashboard...

Role Based Dashboard...

Customization Reports: .NET & Flex based

Role Based Reports

Operations

VS Lignite Power Plant

Online Operations & Maintenance System

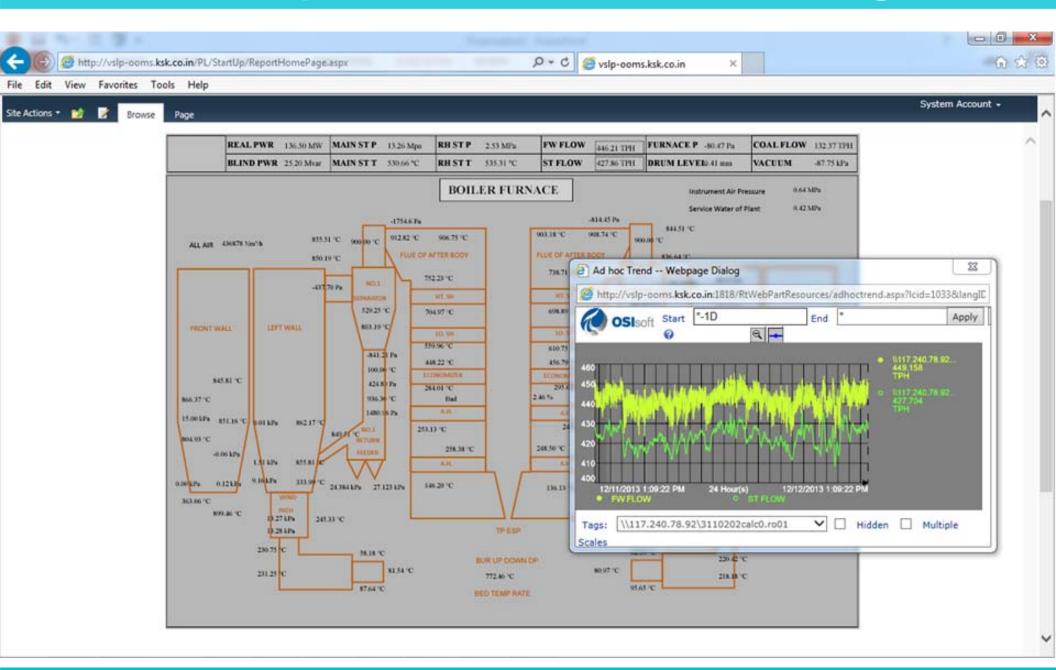
Welcome, Mr. S B Parekh

Logout

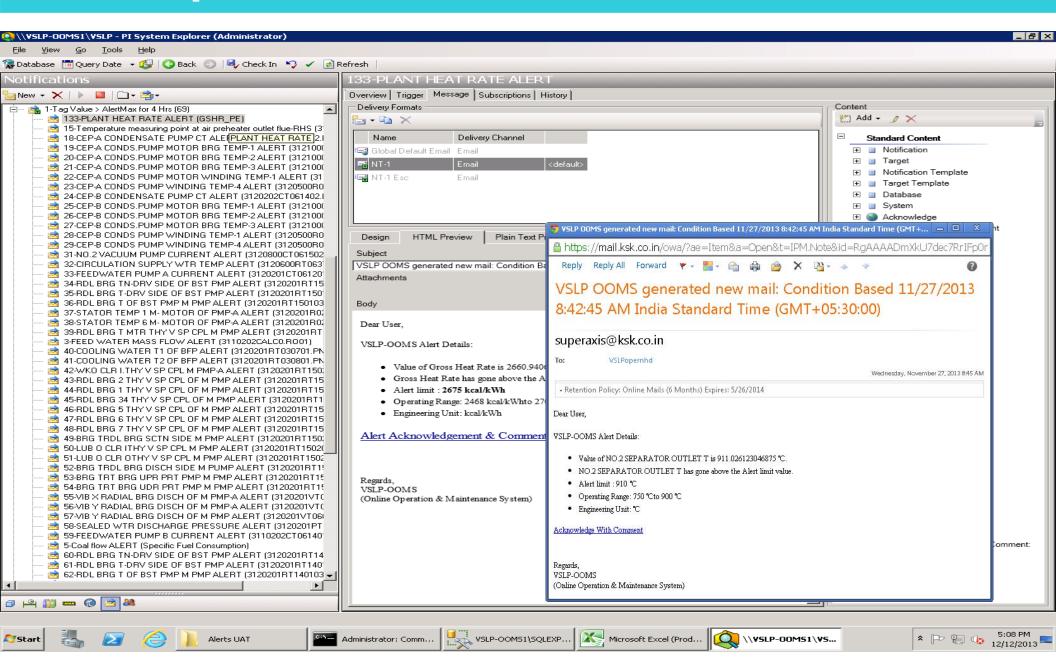
Home

Boiler Important Parameters-Flue Gas

Span: Daily Date: From: 12-Dec-2013 00:00:00


Performance Management Maintenance Chemical Manual Entry BTG-Graphics

To: 12-Dec-2013 15:08:03



Group	Name	UOM	Design Value	Operating Range					Hourly Avg				
				Min	Max	1:00 AM	2:00 AM	3:00 AM	4:00 AM	5:00 AM	6:00 AM	7:00 AM	
Flue Gas	* Combustor outlet pressure	Pa	0.00	-200.00	200.00	-105.36	-5.48	48.18	71.59	67.78	81.23	61.84	
	* SH3 inlet flue gas temperature	°C	820.00	700.00	910.0		-	-	70.0		- 0	X	
	* SH1 inlet flue gas temperature	°C	690.00	650.00	740.0		2		* **	700.00		₩ ₩ {	
	* SH1 outlet flue gas temperature	°C	551.00	501.00	601.0		http://vslp-ooms.ks $\mathcal{P} \star \mathcal{C}$						
	* Economizer inlet flue gas temperature	°C	420.00	370.00	470.0		View Favorite	es Tools He	elp				
	* Economizer outlet flue gas temperature	°C	293.00	243.00	343.0	(6)	•	6	₹ -				
	* RHS Oxygen content measuring point at economizer inlet flue	%	2.70	2.00	3.7						• \\vsln-oor	ns1\3	
	* LHS Oxygen content measuring point at economizer inlet flue	%	2.70	2.00	3.7	285 30	•	• \\vslp-coms1\3 61.133 Pa					
	* Total Air Flow	Nm³/h	4,50,000.00	1,80,000.00	4,80,000.0	284.429 20	1 1 1	Nu luni di Iluni di Addini di O Nusip-coms1/3					
	* Primary Air	Nm³/h	2,62,000.00	1,14,000.00	3,00,000.0	283.857 10		A STATE OF THE PART	ALC: ALC: A		o \\vslp-oor 283.772 °C		
	* Secondary Air	Nm³/h	1,80,000.00	1,00,000.00	2,20,000.0	283.286	the state of the	بينش ويزكنه بعناف	ra a a sel la belli de la				
	* LHS Temperature measuring point at air preheater outlet flue		1,80,000.00	1,00,000.00	2,20,000.0	282.714 -10			1 1 1				
	* RHS Temperature measuring point at air preheater outlet flue	°C	146.00	130.00	150.0	282.143 - 20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	M					
▼	1							~\/\\/					
Show Cha	Show Chart Save as Excel												
							12/12/2013 12:0	0:00 AM 15.13	Hour(s) 12/	12/2013 3:08:00 PN	1		
						Tags: \\vslp-ooms1\3110301PT011301.PNT ✓ ☐ Hidden ☑ Multiple							
						Scales						Ĭ,	
						<						>	

Remote Graphics for Trouble Shooting

Desktop Alerts, SMS, E-mail Notifications

Information on Smart Devices

Sharing Key Learnings

- OSI System & Tool Maker
 - 35 years in business
- EcoAxis Solution Provider
 - 4 years with OSIsoft System
- Users
 - Mostly first timers
- Most critical steps:
 - Requirement analysis: involvement of people in the process
 - Usability, way of life (like mobile)
 - Transformation of processes impacting user behavior
 - Making a difference, ROI is unquestionable

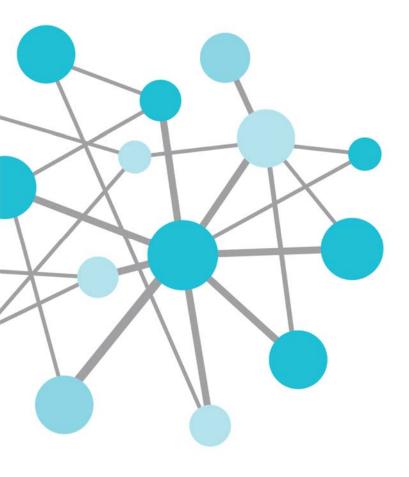
Data to decision...

"Actionable intelligence acquired through continuous monitoring at every level, in typical multi-plant operations, is crucial for improved performance and to control operations and maintenance cost" - K. A. Sastry

Business Challenge

- Asset optimization
- Expertise available at HO and not at site
- Reduce heat losses
- Reduce cost of operations
 & maintenance
- Load based monitoring for improved operations and maintenance practices

Solution


Role based integrated application with decision support approach at every level, using asset framework approach to monitor deviations & performance based on load at which plant is operated

Results and Benefits

- Quickly notice the abnormal operation
- Easy historical data retrieval & analysis for optimized plant operations
- Effectively deploying expert manpower without their costly travel to site
- Access current & historical process/ production data easily - anytime anywhere on any device
- Dramatically improve plant reporting

Abhay Nalawade

- abhayn@ecoaxisindia.com
- Managing Director
- EcoAxis Systems Pvt. Ltd.

THANK YOU

