

SEED (System Energy Efficiency Display) - Energy Efficiency Monitor for a coal fired power station

Presented by

Diwakar Kaushik, AGM(ERP), NTPC Ltd., NOIDA Raj Pal Singh, AGM(ERP), NTPC Ltd., NOIDA

Dated: 09.10.2014, Mumbai

AGENDA

- About NTPC
- PI System implementation in NTPC
- Business Challenge
- Solution SEED (System Energy Efficiency Display)
- OSISoft Products employed
- SEED Results / Benefits
- Future Roadmap
- Conclusion

NTPC Power Share

NTPC Contributes More Than One-fourth of India's Total Power Generation with Less Than One-fifth Capacity

About NTPC

Set up in 1975 with 100% Government Ownership

Awarded "MahaRatna" Status in May 2010

Target of 1,28,000 MW capacity by 2032

No.1 Independent Power Producer globally in 2013 in top 250 Global Energy Companies' list by Platts

Only PSU among the top 35 companies, ranked 6th in the prestigious study of The Economic Times and Great Place to Work Institute" for 2013

About NTPC

2675 MW of new commercial capacity addition

Coal Stations generated 221 BU's, up 3.94% over last year

Coal Stations
PLF of 81.50%
(All India
65.5%)

Performance 2013-14

65 MW solar capacity addition

4 stations achieved more than 90% PLF.

NTPC - PAN INDIA PRESENCE

Type of Plant	Count
Coal based	16 (33015 MW)
Gas / Liquid Fuel based	07 (4017 MW)
Renewables	07 (95 MW)
JV's (Coal & Gas)	08 (6001 MW)

PI System Implementation

PI System implemented in NTPC at

- 17 Coal stations (latest Barh)
- 7 Gas stations
- Corporate office

Note: PI Server-2012 installed at last two stations of Mouda & Barh.

Business Challenge

Auxiliaries Energy Consumption
 Amount of energy consumed by auxiliary equipments in a power station
 Increased auxiliaries energy consumption reduces the Energy sent out to the consumers & hence the accrued revenues.

Auxiliaries Energy Consumption requires close monitoring

Business Challenge

Auxiliary Energy Consumption Monitoring Requirements

- Monitoring electrical power vis-a-vis its process contribution
- Intra-unit & inter-unit, system wise comparison
- Trending over a period
- Early Identification of less efficient equipments for remedial action.

Problem Background

- OLEMS (On Line Energy Management System) had been in use for monitoring power plant auxiliaries energy consumption using energy meters measuring KW, Current, Voltage and p.f.
- Meters connected to OLEMS server for display and archiving

However ..

- OLEMS provides only KW data (no process data)
- Data is available only at 2 or 3 places in the station

Challenges Envisaged

- Integration of OLEMS data with Process data already available at PI server
- Identification of systems for energy monitor based on availability of KW and process data
- Deciding indices to monitor auxiliary energy consumption & its configuration in the PI System
- Providing the required information to the users in desired formats

SEED – Steps Followed

- Ensured OLEMS System OPC Compliance & connected to PI server
- Systems identified for covering under SEED such as Draft system, Milling System, Condensate, ESP etc.
- SEC & ECI chosen indices to monitor energy efficiency
- PI Tags required for SEED created in the station
 PI Server using PI Performance Equations

The Solution

System Energy Efficiency Display (SEED)

An Energy Consumption Monitoring system for power plant auxiliaries using PI server

Integration of Data available on PI server

- 1. Process Parameter from DAS/DDCMIS
- 2. Electrical data from OPC compliant OLEMS

SEED - Indices Used

Specific Energy Consumption (SEC) Kw/Ton

Energy Consumption, Kwh Flow, TPH

Energy Consumption Index (ECI) Kw/MW

Energy Consumption, Kwh
Generation in MWh

SEED OUTPUT

- SEED Process Book Displays with values & trends for auxiliary energy efficiency analysis.
- SEED Process Book Displays availability at Station / RHQ / OS LAN
- Regular Review of SEED Indices at Stations for identifying actionable points.

SEED SCREENSHOTS

Cooling Tower

AMaharatra Company	Syste	m Ener	gy Effi	Displa	y	Pi	rev Day F	Report	
Station: X	XX		Stage: x						
Unit Load , MW		U#4 470	U#5 444	U#6 478	U#7 494	300 14:0	0 18:00 22	200 2.00	6:00 10:00
Main Plant		Energy	Consun	nption In	dex		FW	Air	Coal
System	Unit	U#4	U#5	U#6	U#7	U#4	1289	1774	377
Days Since O/H	Noo		67	638	709	U#5	1186	1815	379
Days office offi	Nos.	403	67	030	103	U#6	1382	1726	379
Post O/H Draft ECI	Kw/MW	18.1	17.5	17.4	14.7	U#7	1570	1749	399
Draft	Kw/MW	№ 21.1	20.4	№ 20.6	14.8				Mark C
Milling	Kw/MW	★ 5.2	★ 5.4	★ 5.3	★ 6.2		X D		WAY S
CW Pumps	Kw/MW	10.4	11.0	10.2	9.5	1200	Yet.		ANN
						1	رسان الأشاريب	and the last of th	- A (D)

3.9

3.5

2.1

4.1

Kw/MW

^{*} The data displayed in the screenshot is typical, only for demonstration purpose.

Off Site	,	Energ	y Consum	ption li	ndex	
System		Sta	age-II	Stag	e-III	
Ash Handling	Kw/MW		1.2	1.3	3	- Control of
Compressed Air Kw/MW			0.8		3	And the second s
		Specific	c Energy (Consum	ption	
System	Unit	U#4	U#5	U#6	U#7	
Milling	Kw/Ton	6.4	6.4	6.7	7.7	
PA & SA	Kw/Ton	2.2	1.9	2.2	2.2	
Condensate	Kw/Ton	1.4	Calc Failed	1.4	1.1	

^{*} The data displayed in the screenshot is typical, only for demonstration purpose.

^{*} The data displayed in the screenshot is typical, only for demonstration purpose.

Unit 04 Milling System

Unit Load 469 MW

Milling ECI 5.2 KW/MW

Mill	Power KW	Coal Flow TPH	SEC Kw/T	PA I/L Temp Deg C	O/L Temp Deg C	Air Flow TPH	AFR	
Α	343	55	6.4	188	61	97	1.8	hyly Macy bott
В	343	57	6.5	200	72	91	1.6	WANTED AND THE PARTY OF THE PAR
С	330	52	6.3	182	71	89	1.7	The state of the s
D	329	56	6.2	266	80	83	1.5	
E	358	55	6.5	206	74	98	1.8	and a color of the state of the
F	358	56	6.4	180	69	97	1.8	Appropriate Control of the Control o
G	322	49	6.6	166	60	87	1.8	Little on the tening of the last
Н	0	-1		35	35	12	0.0	
UNIT		377 t/h	6.4 KW/T			672 tph	1.8	

PAPH-A Air O/L temp 324 degC

PAPH-B Air O/L temp 348 degC

OVERVIEW DRAFT 04

^{*} The data displayed in the screenshot is typical, only for demonstration purpose.

4	A	В	С	D	Е
1	SEED	Parameters	- Previous Day A	Average Repo	rt
2	Current Date/time		20-02-2014 16:05		
3	From Date/time		19-02-2014 00:00		
4	To Date/time		20-02-2014 00:00		
5			Station: XXX		
6	Tag Description		Unit # 4	Unit # 5	Unit # 6
7	Days since last O/H	Nos.	212	600	176
8	Post O/H Draft ECI	KW/MW	19.2	19.3	19.1
9	Unit Load	MW	503.2	501.7	510.7
10	Draft ECI	KW/MW	17.3	21.5	21.0
11	Milling ECI	KW/MW	5.8	6.2	5.3
12	Condensate ECI	KW/MW	3.5	3.5	3.4
13	Comp. Air St-II	KW/MW	1.2		
14					
15	ing System SEC	KW/T	7.5	8.6	7.2
16	Draft (Air) SEC	KW/T	2.1	2.5	2.5

^{*} The data displayed in the screenshot is typical, only for demonstration purpose.

OSISoft Products Used

- PI Server
- PI Performance Equations
- PI Process Book
- Pl Data Link
- •PI System Management Tools (PI SMT)
- PI Tag Configurator

SEED Results / Benefits

- Improved operator awareness of critical plant auxiliaries energy efficiency
- Allows operators to make system wise intra-unit & inter-unit energy efficiency comparisons
- Helps operator to decide most efficient combination of auxiliaries in the system
- Integration of process data with OLEMS data for MIS & other applications

SEED Future Roadmap

- Incorporating more systems for SEED analysis.
- Improving availability & reliability of SEED information
- Creation of Region / Company level
 SEED displays for reviews at HQ
- Completing SEED roll out at all NTPC stations

Conclusion

- Real time process monitoring & decision making is the need of the hour in view of the stricter commercial regulations
- Information availability to the operators to facilitate quick operational decisions promoting energy efficiency
- Increasing comfort level of operators in using PI System based applications & hence the demand for newer applications

Summary

SEED – System Energy **Efficiency Display**

Higher auxiliaries energy consumption directly impacts the power plant revenues, hence real time relevant input to the operators facilitates quick decisions promoting energy efficiency

एनहेंचीमी NTPC AMaharatra Company	Syste	m Ene	rgy Eff	iciency	Displa	y	P	rev Day F	Report
Station: X	XX		21-08-201	4 11:44:00			Stag	e: x	
Unit Load , MW		U#4 470	U#5 444	U#6 478	U#7 494	550 300 14:0	0 18:00 22	2.00 2.00	6.00 10:
Main Plant Energy Consumption Index							FW	Air	Coal
System	Unit	U#4	U#5	U#6	U#7	U#4	1289	1774	377
Days Since O/H			00	C20		U#5	1186	1815	379
Days Since O/H	Nos.	403	67	638	709	U#6	1382	1726	379
Post O/H Draft ECI	Kw/MW	18.1	17.5	17.4	14.7	U#7	1570	1749	399
Draft	Kw/MW	≥ 21.1	20.4	20.6	★ 14.8	\$25V			Market
Milling	Kw/MW	★ 5.2	€ 5.4	▶ 5.3	▶ 6.2	100	(Carlo		N AVA
CW Pumps	Kw/MW	10.4	11.0	10.2	9.5	Name of the least			NV.
Cooling Tower	Kw/MW	4.1	3.9	3.5	2.1	man.	ah	wh	y Par

Business Challenge

Solution

Monitoring system for correctly power plant auxiliaries usina PI server integrating Data available on PI server

Real time Monitoring of auxiliaries energy consumption vis-a-vis its contribution to the process

Results and Benefits

An Energy Consumption Helps operator identify auxiliaries consuming more energy & decide optimum combination of auxiliaries in the system

Contact Information

Diwakar Kaushik,
AGM(ERP), NTPC Ltd.
diwakarkaushik@ntpc.co.in
Raj Pal Singh,
AGM(ERP), NTPC Ltd.
rajpalsingh@ntpc.co.in

THANK YOU

