

Advancing each generation.

Pot Health Analysis with Smart Manufacturing

Geff Wood – Director GPM IPS Manufacturing & Process Control Systems and Automation

OSISoft User Conference: 3/27/2014

Global leader in lightweight metals engineering and manufacturing

- Celebrating **125** years in 2013; **inventors** of the original **aluminum process**
- Delivers value-add products made of titanium, nickel and aluminum, and produces **best-in-class bauxite**, **alumina and primary** aluminum products
- 200+ locations in 30 countries
- 2013 revenues of **\$23.0 billion**; **60,000** employees

Downstream - EPS

- Fastening Systems
- Power & Propulsion
- Wheels & Transportation
- **Building & Construction**
- Forgings & Extrusions

Midstream - GRP

- Global packaging
- Aero, transportation and industrial
- China and consumer electronics

Upstream - GPP

- Bauxite mining
- Alumina refining
- Aluminum smelting
- Power

Typical Smelter for Scale

- Aluminum smelter has very large physical footprint
- Legacy has created many dissimilar systems used to generate overall system
- Before PI, each of these systems were information silos, some with limited history
- Now over 1M tags per plant in PI
- All plants using same 'Data Model' at base

Quick look inside the plant

Recognizing phases of 'SMART Manufacturing'

- Phase I Data Integration → Visualization of Actionable Information
- Phase II Advanced Analytics / Modeling / Intelligence
- Phase III Product & Process Innovation / Market Intimacy

Libraries

How does Smart Mfg, Adv. Analytics and Big Data Relate?

Progression from Unstructured Data to Smart Manufacturing & Advanced Analytics

Haresh Malkani, John Butler

Problem Definition: Need to minimize pot to pot variability

Develop/Deploy Solution with 'Smart' to Minimize Pot Variability

Description: Process of adjusting pot parameters and plant reactions to pots that are running outside the normal pot operation and move outliers to normal.

Benefits

- More Stable Operations
- Better Current and Energy Efficiency
- Reduction of exception Pots
- Technical Challenges
 - Find Root Causes
 - Consistently Fix
- Status:
 - Business Case Analysis complete
 - Pilot for Visualization in Progress
 - Full Project plan being developed
- Applicability: All plants but Business
 Case is variable

Typical Plant Distributions

Solution outline to reduce pot to pot variability

The Fix

- Use Smart Manufacturing and Advanced Analytics to provide
 - Better Manual Intervention Codify the Best Practices
 - Monitor / Alarm / Report exception pots
 - Monitor / Alarm / Report manual modifiers
 - · Online PMS for above as well as:
 - Set on time and correctly
 - Tap on time and correctly
 - Cover on time and correctly
 - Applies to all standardized work
 - Better Operational Equipment Effectiveness (OEE)
 - Operations and Maintenance visibility of failed equipment
 - Monitor / Alarm / Report Waiting Time (Crucibles, Cranes...)
 - Online Visible Schedule and Performance to Schedule of Daily Work
 - Better Control
 - Use Visible Statistics to set Resistance and Feed targets
 - Improve Noise Control and use visible statistics to tune
 - Make Real-Time Control 'Big Data' aware

Actionable Data at the Per/Pot Level

- Determine which pots are outside "normal operations"
- Determine which pots will be outside "normal operations" if not changed
- Recommend mitigating actions to return pots to Normal Operation

Roll Up Data to Various Levels of Business

OR... Drill down to Individual KPI Performance

Drill Downs same format for all plants enforcing Alcoa Business Systems standards

Advancing each generation.

