

Power Transformer Simulation Laboratory for Proactive Maintenance II

Presented by Nicolas Di Gaetano & Luc Vouligny

Agenda

- An overview of Hydro-Québec
- Context of the project
- Objectives of the project
- Transformer monitoring
- Conclusion & Future Work

Snapshot

- Hydro-Québec is among the largest power generator in North America
 - 98% renewable energy
- Hydro-Québec is among the largest power transmission companies in North America
- Hydro-Québec is the largest electric utility in Canada

About Hydro-Québec

About Hydro-Québec's Research Institute (IREQ)

- > Largest electric utility research centre in North America
 - 500 employees of which half are researchers
 - \$100M invested each year on 100 projets
 - 1000 patents

Hydro-Québec TransÉnergie

- Transmission assets: \$17.6 B
- 33,630 km of power transmission lines
 - Including 11,422 km of 735 kV lines
- 514 transmission substations
- Annual investment: \$1,3 B

Context of the project

- Network: reliable and available
- Data: high-quality, value-added and just-in-time
- Decisions: appropriate, timely
- Power transformers are critical assets of the network
 - Average age: 33 years old
 - Their life expectancy: 40-50 years
- Transition from systematic to proactive maintenance

Objectives of the project

- Maximize asset life
- Reduce the Risk & Cost of unexpected failure
- Drive maintenance and inspection by asset condition
- Awareness of its condition and performance
- To maximize system availability

Transformer monitoring

Real-time monitoring

Transformer monitoring: From past to future

- Use remote monitoring for all growth and asset sustainment projects
 - More than 500 substations over a 15-year timeframe (2009–2025)
 - · Objective: 30 to 40 substations a year
 - Monitoring of 240 strategic transformers by 2015
 - · Gas and moisture
 - Temperature
 - Bushing and tap changer monitors (future deployment)
 - OSIsoft PI System
 - Automatic addition of points (PI APS, PI GenericCSV_APS connector)
 - Maximizes use of PI AF templates
 - PLAF SDK

PI Webparts: Displays

PI Webparts: Displays (continued)

Informations générales

Description	Valeur
Nom du poste	La Suete
Numéro d'exploitation	T2
État du transformateur	Normal
	Schéma unifilaire

Données ION

Description	Valeur UM
Courant Phase A	1003 A
Courant Phase B	1031 A
Courant Phase C	997 A
Tension Phases AN	14,815 KV
Tension Phases BN	14,931 KV
Tension Phases CN	14,983 KV
Puissance active	45,179 MW
Puissance réactive	0,219 MVA
	Page ION

Données inventaire

Description	Valeur UM
Numéro d'exploitation	T2
Numéro d'équipement	1U-1543
Fabricant	FEDERAL PIONEER
Date de fabrication	01/01/1978
Puissance 1	40 MVA
Puissance 2	53 MVA
Puissance 3	66 MVA
Tension au primaire	225 KV
Tension au secondaire	26.4 KV

Arborescence

Données Qualitrol

Description	Valeur UM
Température ambiante	-12,38 °C
Température de l'huile	32,71 °C
Température enroulement basse tension	48,94 °C
Température enroulement haute tension	38,39 °C
	Page Qualitrol

Données IÉTI

Description	Valeur UM
Âge de l'équipement	25 yr
Âge apparent	32,135 yr
Cote de l'appareil	19
	Page IÉTI

Données Hydran

Description	Valeur UM
Gaz dissous hydrogène	27 ppm
Taux d'humidité	5 ppm
	Page Hydran

Données CPC

Description	Valeur
Fabricant du CPC	ABB
Modèle du CPC	UZERN
Date du dernier IC	27/09/2001
Position du changeur de prise	4
Compteur opérations changeur de prise	1154
	Page CPC

Données traversées

No datasets selected

Avertissements

PI Webparts: Displays (continued)

PI Notifications: Alerts

Remote Maintenance Centres

Managers

Transformer monitoring

Acquisition, Estimation & Detection

Thermal prediction with physical models

- IEC 60076-7 International Standard
 - Loading guide for oil-immersed power transformer
- IEEE Clause 7 Non-Linear
- IEEE Clause 7 Linear
- Swift
- Susa

IEC 60076-7 / Exponential Equations

- Load varies as a step function
- Used in the determination of heat transfer parameters
- Increasing load (k)

Decreasing load (κ)

$$\theta_{o}(t) = \theta_{a} + \Delta\theta_{or} \times \left[\frac{1 + R \times K^{2}}{1 + R}\right]^{x} + \left\{\Delta\theta_{oi} - \Delta\theta_{or} \times \left[\frac{1 + R \times K^{2}}{1 + R}\right]^{x}\right\} \times f_{3}(t)$$

IEC 60076-7 / Difference Equations

- Both the load and the ambient temperature are time-varying
- Adapted for monitoring purposes

$$\theta_{O(n)} = \theta_{O(n-1)} + D\theta_{O(n)}$$
Constants:
$$k_{11} : \text{Model constant}$$

$$0,8$$

$$> \tau_{O} : \text{Avg. oil time constant}$$

$$150$$

$$> \Delta \theta_{or} : \text{Top oil rise constant}$$

$$50$$

$$> R: \text{Load loss ratio}$$

Temporal variables

- к: Load factor
- θo: Top-Oil temperature
- θ_a : Ambient temperature
- Dt: Time interval
 - 1 minute

Constants:

- k_{11} : Model constant
 - 0.8
- T_0 : Avg. oil time constant
 - 150
- R: Load loss ratio
 - 8.4
- x: Exponential power of current vs top oil rise
 - 8,0

Acquisition, Estimation & Detection

Difference equation performance

Real data

3 years of data

Load from 0 to 1.35 pu Ambient Temp. from -31°C to 33°C

Performance with real data

Performance over a year

Results with physical models – 2009

Results with physical models – 2011

Results with clustering

Neural networks

- Neural networks are nonlinear black-box structures with "interesting" properties
 - general architecture
 - universal approximator
 - non-sensitive to over-parametrization
 - have learning algorithm to acquire knowledge from their environment, using examples
 - have recall algorithm to use the learned knowledge

Basic Regressor Neural Networks

Current Inputs (Static Networks)

Current Inputs and Past Outputs (Dynamic Networks)

$$\theta_{O(n)} = \theta_{O(n-1)} + D\theta_{O(n)}$$

Matlab results for Neural Network top-oil temperature prediction

Abnormal behaviour (data cleaning)

	AmbT	load	Actual	ANN
	9.68	36	19.52	19.49
	9.68	36	10.85	10.89
(9.68	11739	146.90	15.81
ı	9.68	12339	13.86	16.88
l	9.56	3	24.86	28.95
	9.58	36	10.79	27.59
	9.37	3	24.75	15.70
	9.38	3	10.70	10.71
	9.37	3	10.72	10.69
	9.38	3	10.72	10.69
	9.37	3	10.67	10.66

Neural Network Estimator

Neural Network prediction results with real data

Future work

- Gradual implementation of models (2014-2018)
 - Thermal performance
 - Dissolved gas
 - Moisture and aging
 - Tap changer and bushing
 - Mechanical state
- Each model are developed with the following steps

Proactive maintenance Advantages

Transformers

- Avoiding major failures
- Avoiding unavailability and captive power

Equipment

Awareness about equipment condition as it ages

Sensors

- Detection of malfunctioning equipment
- Improvements on many equipment settings

Power Transformer Simulation Laboratory for Proactive Maintenance

« Now that we have on-line monitoring possibilities for maintenance purposes on power transformers, our simulation laboratory will allow us to elaborate and test many possibilities of proactive maintenance models & technics before Hvdro implementing them in the field. » Québec

Business Challenge

- Maximization of asset life
- Risk & Cost Reduction of unexpected failure
- Maintenance and Inspection driven by asset condition

Solution

- Set up the infrastructure & organization needed to ensure real-time monitoring of transformer condition
- Real-time data analysis with predictive model

Results and Benefits

- Transformers
 - Avoiding major failures
- Equipment
 - Awareness about equipment condition as it ages

Nicolas Di Gaetano

- DiGaetano.Nicolas@hydro.qc.ca
- Fiability Engineer
- TransEnergie, Hydro-Québec

Patrick Picher

- Picher.Patrick@ireq.ca
- Researcher & project manager
- IREQ, Hydro-Québec

Arnaud Zinflou

- Zinflou.Arnaud@ireq.ca
- Researcher
- IREQ, Hydro-Québec

Luc Vouligny

- Vouligny.Luc@ireq.ca
- Researcher
- IREQ, Hydro-Québec

THANK Y()

