Improved washing and bleach plant performance through value-added data analysis Presented by Dr. Roger Tembreull # **Business Challenge DATA** 1990 2010 2000 # Two technical challenges # CASE STUDY: Brownstock Washer Efficiency - Problem Low washing efficiency - Vacuum drum washers operating at more than two times original design on hardwood - Excessive carryover and high soda loss result # PROBLEM: Impact of poor brown washing - -High soda loss / soda makeup - -High bleach CIO2 & NaOH demand - -High BOD load to waste treatment - Low evaporator steam economy - Reduced recovery boiler steam generation # PROBLEM: High filtrate conductivity #### **Initial State** Hardwood #4 Filtrate Conductivity (primary metric) Washer efficiency is measured using filtrate conductivity which is a measure of soda loss and a surrogate for carryover to the bleach plant Max #### PROJECT RESULTS **Initial State** Baseline mMho Final State 30% Reduction Comparison of before & after shows a ~30% reduction in hardwood filtrate conductivity #### **PROJECT SAVINGS** ✓ CIO2 & NaOH demand reduction - ✓ Caustic makeup reduction - ✓ Increased recovery boiler steam generation - Lower BOD load to waste water treatment **6% Cost Reduction** # = Additional Savings Improving brown washer efficiency has reduced organic carryover to the bleach plant # **Our Strategy** - 1. Use historical data to identify those **key variables** that we can *control* that drive washing efficiency - 2. Find their optimal settings - 3. Implement the new settings - 4. Asses the impact #### The Solution We Chose Cloud based solution on the top of current data infrastructure #### **1700 PI tags** Brown washing + bleaching + select digester tags 30-min time lagged averages # A New Approach to Process Optimization # An easy and effective analysis Classical way Looking for a root cause Efficient way Identifying operating configurations that deliver stable performance 8250 **€** @OSIsoftUC | #UC2014 6750 7500 6000 9000 9750 10500 ## Easy to find key variables #### "Hyperlift" for Hardwood 1st Drop Leg Temperature Hyperlift that shows the dramatic impact of 1st drop leg temp on soda loss green = "good", red = "bad" Braincube can automatically rank and sort all potential model inputs Hypercubic analysis can be used to rank models that contain more than one variable ## An unexpected solution Model of Hardwood 4th Conductivity = f (Drum Speeds) Braincube indicated that lowering brown washer speed would improve efficiency This is counterintuitive because vat consistency increases as the drum speed decreases Vat "level" here & throughout the presentation is drum speed in percent #### **Brown Washer Model** # Statistically Model Historic Operating Performance Braincube shows how variables we can control have affected past performance When operating within the "rule" filtrate conductivity was reduced by 11% # We had to change our mind! No.1 Drum Speed-Control (Hardwood) Drum speed control was introduced in July for drums 2, 3 & 4 and, in August, No. 1 drum was placed in speed control #### A new stable situation No. 1 Drum Speed Stability (Hardwood) > Resulting stabilization of inputs ### **CUSUM Chart - A real optimization** CUSUM Analysis of 4th Filtrate Conductivity and No.1 Vat Speed (Hardwood) > CUSUM analysis shows visually that hardwood 4th filtrate conductivity tracks No. 1 washer drum speed #### **CUSUM Chart - Positive collateral affect** Reduction in Hardwood Bleach Sequence CIO2 The 4th brown washer mat consistency is not routinely measured so the mass rate of soda loss reduction is unknown CUSUM analysis shows that SEQ ClO2 has decreased with No. 1 drum speed confirming that carryover is reduced ## **Bleaching cost reduction** CIO2 vs No.1 Drum Speed (hardwood sequence) CIO2 reduced by... 6% HWD 3% SWD # Extra bleaching cost reduction Hardwood Sequence Caustic Reduction Hardwood bleach caustic consumption has decreased as ClO2 has decreased – less is needed for E1 delignification #### Other Braincube Value-Adds - ✓ Discovered and corrected a bark boiler O2 controller logic problem - ✓ Demonstrated excessive airflow in the lower furnace of our power boiler contributes to the high flue gas temperature - ✓ Verified combustion air temperature and liquor gun pressure are primary drivers of recovery boiler CO emissions - ✓ Created a utility plant efficiency metric for energy optimization - ✓ Created dashboards for up-to-date comparisons of month over month steam demands by header pressure to monitor steam & energy use - ✓ Evaluated the effectiveness of enzyme addition to brown pulp storage # **New opportunities** Seasonal 60# Steam Heating Demand Total 60# Steam to Process (klb/h) = (Turbine 60# Steam + 60# PRV Steam + 400# AUX Turbine Exhaust Steam - 60# AUX Steam) # **Drive smart, Drive "Green"!** **BrainTouch standardizes your best practices** # **Architecture** #### PI Cloud Connect - Publication #### **Conclusions** 1. With fewer resources, we need solutions that will deliver: Effective analytical tools Insight (not just data) Rapid solution deployment Sustained profitability 2. Braincube has been demonstrated to be such a solution at the Escanaba mill # Dr. Roger Tembreull Roger.Tembreull@NewPageCorp.com Sr. Technical Engineer NewPage Corp # THANK MAN