

Welcome to the O&G & Industrial Chemicals Industry Tract

© Copyright 2015 OSIsoft, LLC

© Copyright 2015 OSIsoft, LLC

Today's Agenda

- Welcome and Introductions
- Agenda and Customer Presentations Overview
- Keynote Energy's New World
- Customer Presentations
- Closing Comments

Oil and Gas - Industry Principals

Upstream

Cindy Crow

Midstream

Michael Graves

Hydrocarbon Processing Industries(HPI)

Craig Harclerode

O osisoft. EMEA USERS CONFERENCE 2015

Speakers and Topics

9:00	9:20	Introductions and Keynote	OSIsoft
9:20	9:50	The PI System: An Essential Pillar for MES and Operational Intelligence	Omnia Fertilizer
10:00	10:30	The Journey to an Integrated Refinery Information System	INA
10:30	11:00	Break	
11:00	11:30	Business Intelligence Solutions in PI Asset Framework	MOL PIc.
11:40	12:10	Diverse Requirements, One Platform	PetroSA
12:10	2:00	Lunch	
2:00	2:30	Reducing Reserved Daily Natural Gas Capacity through Operational Intelligence	MOL Nyrt.
2:40	3:10	Operational Intelligence: Real-time Data Supporting Real-time Production Optimization	BG Group
3:10	3:40	Break	
3:40	4:10	Optimizing Natural Gas Compression, Storage and Quality with the PI System	Columbia Pipeline Group
4:20	4:50	Diversity of the PI System in EMEA Midstream	OSIsoft
4:50	5:15	Wrap-Up and Closing Comments	OSIsoft

D

Using the PI System in O&G & Industrial Chemicals to Deliver Business Value in the 21st Century

Energy's New World

© Copyright 2015 OSIsoft, LLC

Energy's New World.....

When written in Chinese, the word 'crisis' is composed of two characters, one represents danger, and the other represents opportunity. [Saul David Alinsky]

If you always do what you always did, you will always get what you always got. [Albert Einstein]

Operational intelligence enabled by the PI System is your opportunity to respond to the "crisis" of today with innovation by using the capabilities fully to enable transformation...this is not your "Mothers PI"

The Journey to Enterprise Intelligence – IT/OT Convergence

Michael Graves, OSIsoft

© Coper Copyright 2015 OS (soft, ELC

OT Context Infrastructure - Foundational for Operational Intelligence & Excellence

OSIsoft. EMEA USERS CONFERENCE 2015

9

The PI System as an Enterprise OT Data Infrastructure

Data aggregation, quality & normalization. Foundation for Calculations, Analytics, Visualization, Dashboards/KPIs, Mobility, & Reporting

busines

Asset, Plant, "System", or Enterprise

OT Data Model

Value Prop for Migrating from Tag/Excel to Asset/Web

- 1. Inconsistency in analytics/calculations
- 2. Tag based
- 3. Static analytics/calculations
- 4. Limited Trending & Visualization
- 5. Local Ownership

- Consistency in analytics/calculations
- Asset based
- Dynamic, real-time analytics/calculations
- Powerful, flexible Trending, Visualization. Events, alerts
- 5. Web based access and collaboration

Reducing \$/BOED by Organizational Transformation with PI AF

"PI AF underpins our analytics and visualization by providing a secure, normalized asset based data structured that simplified the development and support of our integration, analytics, applications, and visualization enabling enhanced collaboration."

Ernest Garner and Tara Willis, Automation Analysts, GOM

Diverse, tag based data structure inhibited collaboration and complicated integration and applications management

- 3+M tags with diverse naming from 29 offshore DCS "historians", 650 assets
- Tag based applications and solutions portfolio...Massive "spider web"
- Issues with security, performance, and reliability of off shore data transmission

SOLUTION

Secure and normalized asset based data integration, applications, and visualization

- PI Infrastructure extended to the offshore assets for security and performance improvement
- GOM asset data object model used for integration and application simplification
- Migrated all analytics, visualization, and collaboration to the PI AF data model

RESULTS

Analytics and Modelin

PI System Tools

PI DataLink

PI Coresight

Modelina

Analytics &

Visualization

Improved operational performance from enhanced collaborative decision support

- Significant reduction in OPEX
- Improved production from asset availability
- Improved collaboration and teamwork

DSIsoft. EMEA USERS CONFERENCE 2015

© Copyright 2015 OSIsoft, LLC

OT Context Infrastructure and Abstraction Layer

\$500M-550M EBITDA improvement

MOL (Global Integrated O&G Company – Hungary)

"Installing the PI System infrastructure across our fuels value chain was fundamental to our New Downstream Program and the significant performance and sustainability improvement we have seen."

Tibor Komróczki Head of Process Information & Automation

CHALLENGES

Need to significantly improve performance of a portfolio of 6 refineries & related value chain

- Low cultural alignment, standardization, and use of best practices
- limited data based and proactive decision making

SOLUTION

Implemented a "New Downstream Program – NDSP" based on a new data and information PI System centric strategy

- Installed the PI Systems across the full value chain
- Developed new PI System based applications in critical areas including energy & reliability

RESULTS

Significant Improvement in the fuels value chain performance in all key areas – energy, reliability, safety, & compliance

- Increased Yield 5%
- Decreased energy consumption 2% YOY
- Reduced HC loss: -30%
- Utilization: 1.1%

SISOFT. EMEA USERS CONFERENCE 2015

MOL Downstream AF Based Applications

- Interlock statuses
- Operating envelopes
- Alarm management
- Energy KPI breakdown (6 tiers)
- Column Dashboards
- Normal mode of control loops
- APC monitoring
- 1st & 2nd Level material balancing
- Sigmafine (PI AF) used for yield accounting

- Energy Monitoring
- CH, Utilities and Energy balances
- Flare activities
- Corrosion control
- Crude Blending Control
- Natural Gas and Fuel gas forecasting
- Control rooms' temperature
- Yield Optimization/Reporting
- Plan vs Actual (PvA) Analytics

Improving Asset Integrity with Advanced Corrosion Predictive Analytics

🔇 \\MOLSZHBPIAF\Assets - PI System Explorer										• ×
<u>File S</u> earch <u>V</u> iew <u>G</u> o <u>T</u> ools <u>H</u> elp										
🔕 Database 🛗 Query Date 👻 🕓 🥵 🎧 Back 🌍 🖳 Check In 🧐 🖌 🗃 R	efresh	1 🔁 N	lew Ele	ement 👻 🐮 New Attribute				Sea	rch Elements	، م
Elements	Kén	mente	sítő rea	aktor betáp előmelegítő cseppfo	gó - HTHA					
🚌 🐣 Elements	Ger	neral	Child El	ements Attributes Ports Anal	yses Version					
і́н 🗇 АРС							Group	by: 🔽 <u>C</u> ategory	Template	
ARGUS	Filt	Filter						Name:	HTHA limit F	
B- Crude Units		A Value A Value (3)				6) *		Description: Properties:		
🖶 🗐 Danube Refinery									<none></none>	•
Energy Consumption Predictions			Catego	ry: <ivone></ivone>				Categories		6
		4		Current	214.10000610351563					9
		1		🗉 Desc Ide kell a hosszú leírá:	Ide kell a hosszú leírás.			Default <u>U</u> OM:	<ivone></ivone>	•
Fine Monitoring Therefore Monitoring				🍼 Gasolin flow	82.83045			Value Type:	Double	•
in INV				Ø Decity	801.9			Vaļue:	605.81629193204	753
🖨 🗊 DBK5 IOW		-				////		Data <u>R</u> eference:	Formula	-
Kenmentesítő reaktor betap előmelegítő cseppfogó - HTHA Kénmentesítő reaktor betáp előmelegítő cseppfogó - Nyomás				El Gasolin molar flow kmol/n	0.288/9018023142428				Settings	
🍘 Kénmentesítő reaktor betáp/kilépő hőcserélő - Hőmérséklet	11			Molar weight g/mol	230			A=Partial pressure	re psi;[((574.6+(-	
— Kénmentesítő reaktor betáp/kilépő hőcserélő - Nyomás Zzelektív bidrogénező reaktor betáp előmelegítő - Hőmérséklet A A				III H2 flow	11238.164436340332			0.03015*A))+(33	361484.9/A^2])]	
E 🗊 DETBE IOW				H2 molar flow kmol/h	1348.57973236084					
BURG JOW				💷 HTHA limit F	605.81629193204753					
B- DIGY2IOW				Kvencs H2	86.3660355		Ш			
⊞… @ DKBIIOW				🍼 Make up H2	254.211136					
Solomon Szamitasok				💷 Molar weight g/mol	1		,			
in Statistical Quality Control				E Partial pressure	20.002323679218641					
ii 🗇 Tanks				Partial pressure psi	290.03369334867028					
🗄 🗿 Tisza Refinery				6 Pressure	Pressure 19.0066071					
Zala Refinery				🞺 Rec H2	11070.3193					
📖 📆 Element Searches		1	•	🗉 Suruseg kg/Nm3	0.12					
				🗉 HI Limit	270					
				🗉 HTHA	318.7868288511375					
Elements		/		🎺 Is operating	1					
Hevent Frames				💷 LO Limit	-100000000					
Library		1		💷 Name	DBK5RTI2017.DACA.PV					
m Unit of Measure		1		INaplo_AZON	BK5_TK					
W Myri		1		🗉 Туре						
A Contacts			•	E Yesterday Out of limit time	0 h					
Analyses										
HTHA limit F										

High Temperature Hydrogen Attack (HTHA)

- f^x (metallurgy, temperature, hydrogen partial pressure(PP), length of exposure)
- Developed PI AF template that:
 - Determine partial pressure
 - Attribute of pipe class
 - Temperature and length of exposure limits
 - Total time above Temp and PP
 - Alerts/notification/event frame
- Tested and rolled out in 6 units < 1 week
- Expanding to all plants in 2015.

Improved DOF Decision Making with PI AF

ENI Global E&P

"PI AF is the foundation of our Digital Oil Field

program enabling quicker decision making, early detection of potential issues, & identification of optimization opportunities".

Alberto Dellabianca, DOF Advisor

SF UC2015

CHALLENGES

- Business environment demanding faster, more proactive decision making, lower costs, and improved scale and pace of DOF program.
- Diverse E&P assets and systems
- Lack of standardization
- Reactive, sub optimal decision making resulting in lost production, higher costs, and increased risk.

SOLUTION

Use of PI AF and PI Analytics as foundation to the DOF program

- PI System infrastructure extended across all E&P assets and operations
- Installed PI AF collectives on all major production assets
- Leveraged PltoPl for improved data quality, reliability, and security
- Developed E&P Global AF data object model with extensive use of templates.
- Leveraged PF Analytics (Extensively)

RESULTS

Significant improvement in preventable lost production, lifting cost reduction, and reservoir optimization.

Estimated results in the areas of:

- Lost production
- Lifting cost reduction
- Improved critical asset reliability
- Improved reservoir performance

System Architecture

osisoft. EMEA USERS CONFERENCE 2015

Most Advanced Refinery in the World

YASREF (Yanbu Aramco Sinopec refinery JV)

"Selecting the PI System and EA early supported a smooth refinery start up and set the foundation for an integrated, collaborative data based decision making culture that supports YASREFs vision of being the most advanced refinery in the world by 2020."

Mahmoud M. Madani, IRIS Lead Project Engineer

<u>SF UC2015</u>

CHALLENGES

- 23 separate applications from a variety of vendors including DCS; aggressive grassroots schedule
- Lack of collaborative, data based decision making using standard DCS supplier approach
- Weak data and analytical foundation to enable OpEx and continuous improvement

SOLUTION

- YASREF strategically chose the PI System as an integration and applications infrastructure applications
- Migrated standalone applications to the infrastructure with PI AF
- Used Microsoft platform to provide advanced web based reporting and decision support

RESULTS

Enabled a smooth refinery startup, reduction of over 50% of the standard applications

- All calculations and analytics done once in the infrastructure
- Provided KPIs and performance reporting foundation for OpEx

Moving Applications to & Integrating Solutions with the Data Infrastructure – Simplification & Standardization

OSIsoft.

Multi-step Data Quality Assurance with PI AF

Data Quality is particularly important for regulatory and compliance reporting parameters. Users must be aware of the quality of the data they are basing their decisions on.

		Elements	110AI	JAI1398C																															
)	Cleanse Raw Data		Gene	ral Child Elements Attributes Ports	Analyses Version																														
	Remove Spikes		Filter	Filter																															
				✓ : ■ ♦ Name	≏ Value	FurnaceEmission																													
	 Cneck range 	🗿 110AI2398D 🗏	≡ ⊕ 	BadData	True	General Attribute Templat	tes Ports Analysis Templates																												
	 Detect flat line 	🗊 110A12598A		Alternative	0			Name:	DailyEmission_NOx																										
	Detect hat hite	🗇 110FIC1576		PeriodForAverage	3600 s	Name	^	Description:																											
	 Use alt source for 	🗇 110FIC 1650		SubstituteAction	LastGood	fto DailyEmission_N		Categories:	· · · · · · · · · · · · · · · · · · ·																										
	□ 110FIC16 □ 110FIC2			ImeBadBeforeRemoval	TimeBadBeforeRemoval 900 s fix DeviationHours CO		Analysis Typ	e: Expression Rollup Event Frame Generation																											
	dad data	🗐 110FIC2594		DataTimeOut	True	f(<) DeviationHours_I	NOxNGj																												
																	11												🗉 🖶 🍼 Status	Good	fo DeviationHours_(D2			
	🕤 111AI0702 🍯 111AI1702			III TimeNoData	1000 s	f(<) DeviationHours_(Opacity SOONG:																												
	Calculate confidence	Calculate confidence			1.9810816049575806	fo DeviationHours	Temperature																												
				FlatlineDetection																															
				FlatineLimit	3 count																														
	percent of good data			Example Element: YASREF\Refiner\\ISBL Crude/Vacuum (C			10)\Atmospheri	: Heating\Train 1\Atmospheric Heater (110-F-1001)\Stack\Flue Ga	as Emission																										
				SpikeRemoval	raise	En Evaluate																													
	of all input parameters	🗐 112AI1004			25 %	Name	Expression	Value	Output Attribute																										
	1 1	🗇 112AI2004 🗇 112AI2010		Status	G000	Intensity	Convert(TagAvg('NOx EmissionIntensity', '*-1d',	**	<u>Click to map</u>	^																									
		🗐 112FIC0028		Value	1.9810816049575806	HHV	<pre>TagAvg('HigherHeatingValue','*-1d','*')</pre>		Click to map																										
			Ð	WorkingRangeChecking	False	FuelFlow	<pre>TagTot('\ FuelGasMassFlowRate', '*-1d', '*'</pre>)*:	<u>Click to map</u>																										
	Reject Calculated			1		Result	<pre>if 'NOx' = "True" then (if (BadVal(Intensity) of the state))</pre>	er I	<u>NOx[DailyMassEmission</u>	= *																									
	results with the						" then (if (BadVal(Intensity) or BadVal(HHV) te("Bad Input") else Intensity*HHV*IagIot(')	or PctGood	('\\ FuelGasMassFlowRate', '*-1d','*')																										
	Confidence level																																		
ノ																																			
	below a threshold									~																									
	(a = 0.0%)						iggered Periodic																												
	(e.y. 80%)				Run every day at 12:00 AM Configure																														

Bringing IT and OT Together -Best in Class Reference Architecture

Leverage best practices in securing control systems and IT/OT Convergence

- Fully redundant architecture with interface, network, and server level failover
- Strict rules and traffic control across firewalls
- High Availability PI Collectives at all levels
- Buffering data at all levels to ensure no data loss in case of network or server outages
- High frequency data collection from the source

Reducing Costs per BOED Produced by 2-5% YOY* in E&P

* Distilled from the over 500 O&G customer uses cases presented at OSIsoft events

OSIsoft. EMEA USERS CONFERENCE 2015

Improving Controllable Margin in Logistics by 2-5% YOY*

* Distilled from the over 500 O&G customer uses cases presented at OSIsoft events

Improving Controllable Margin by 1-5% YOY* in HPI

* Distilled from the over 500 O&G customer uses cases presented at OSIsoft events

OSIsoft.

Energy's New World.....

Every PI System has these capabilities....the question is how have you been using....and more importantly, will you be using to respond to the "crisis opportunity" today and in the future.

Lets see how other customers are using the PI System to transform their world...

