

Business Intelligence Solutions in PI AF Quality and Energy Management Applications in MOL production

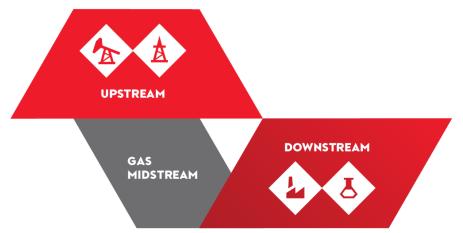
Presented by László SZABÓ

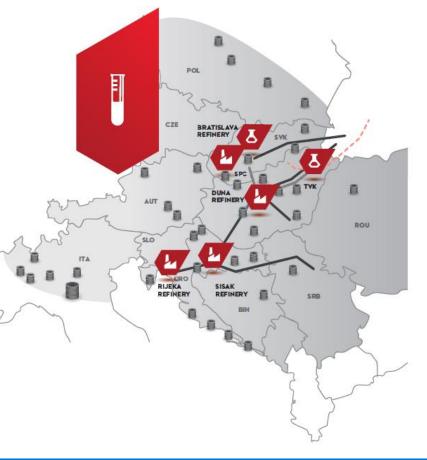
Agenda

Statistical Quality Control

Energy Monitoring System

Expert System


Q&A

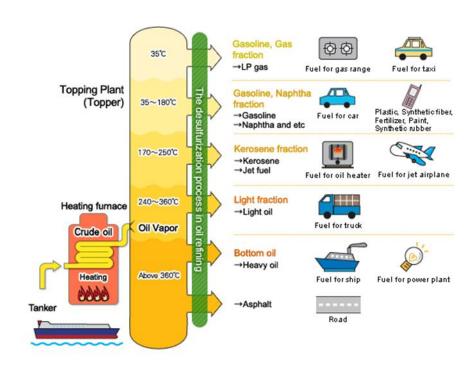


MOL Group

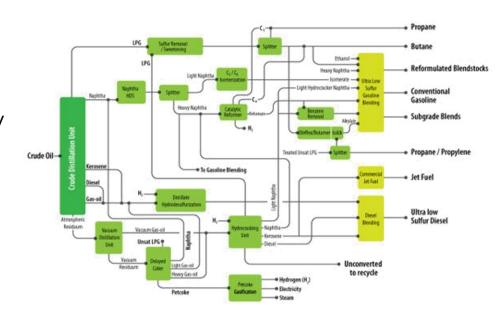
MOL is an integrated, independent, international oil and gas company, headquartered in Budapest, Hungary with a track record of over 100 years in the industry.

CORE ACTIVITIES

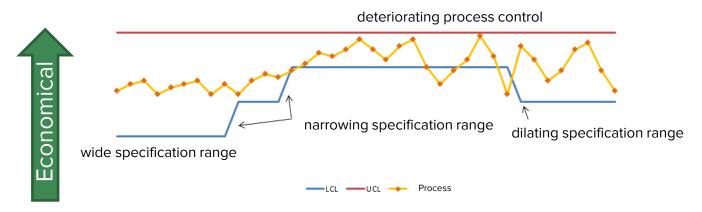
MOL Group in numbers



OSISoft and MOL Hungary

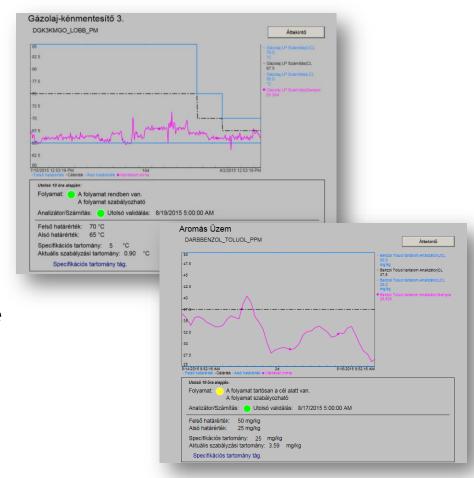

Role of Quality and Energy

- Successful refinery operation means: create on-spec product in the most energy efficient way.
- Product qualities are key parameters, they affect:
 - product yields and
 - energy consumption.


Quality Management in Refining

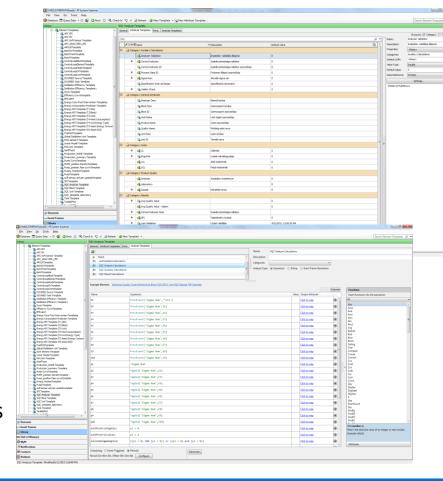
- There are numerous quality regulations
- Operating mode dependent quality specifications
- Processes must be monitored continuously
- The stability of the processes can change
- Statistical Quality Control (SQC) is a good application to manage quality control

Statistical Quality Control

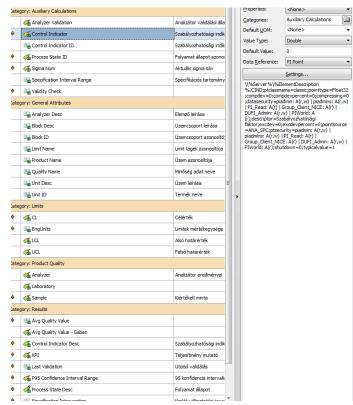

- Statistical tool to highlight the problematic quality specification
- Process evaluation based on Western Electric rules
- Dynamic limits increase flexibility
- Analyzer or soft-sensor based quality calculation

Visualization

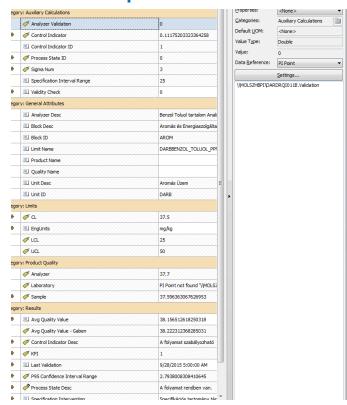
- The SQC displays are created in PI ProcessBook
- The displays are published on-line in the PI Coresight
- The final output of the process evaluation is a simple, understandable recommendation in a text format



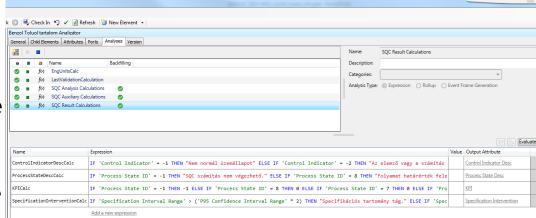
Calculation


- 14 units 41 quality
- Templates based structure Pl Asset Framework (AF)
 - Easy rollout
 - Automatic visualization

(element relative and template based displays)

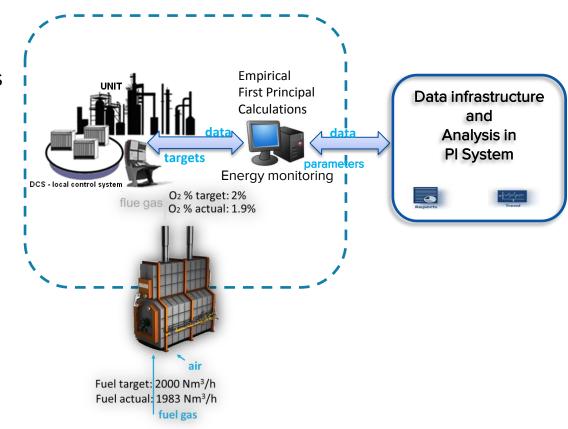

Complex calculation - PI Asset Analytics

Calculation details – AF Element Template

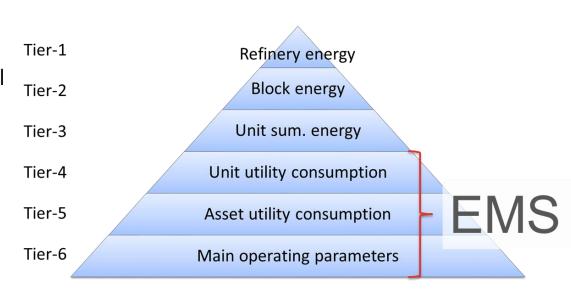


Element template

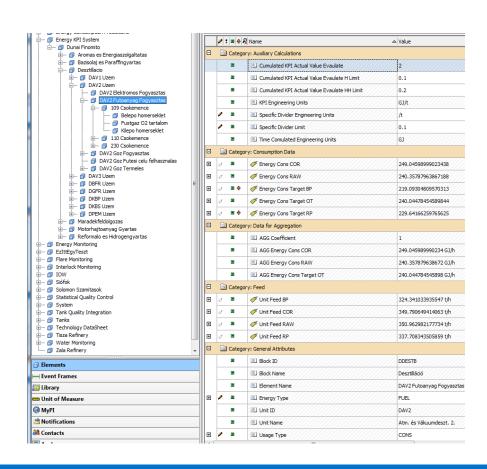
Element


Calculation details – Asset Analytics

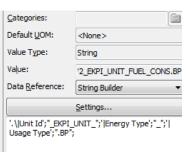
- Calculation based on the attributes of the template
- The results of the calculation are written in attributes
- The different Asset Analytics are scheduled


Energy Monitoring System (EMS)

- On-line, open loop, model based control system. Detects excess energy consumption, and advises corrective interventions to the operators.
- The expert system helps to evaluate the operation of the units.


Position of EMS in the KPI system

- The Energy KPI System of the refinery collect the energy consumption into a hierarchical system
- The EMS calculates the target values of the Tier 4-6
- The calculations are implemented in PI Asset Framework


Templates of the EKPI

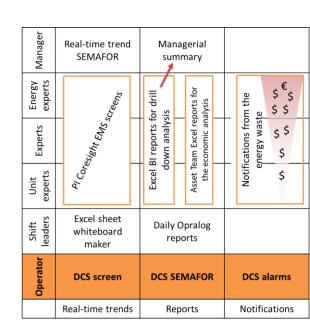
- The structure of the Energy KPI System is based on element templates
- The parent and child elements are linked to each other
- The templates include the basic calculation

Example for PI Point generation

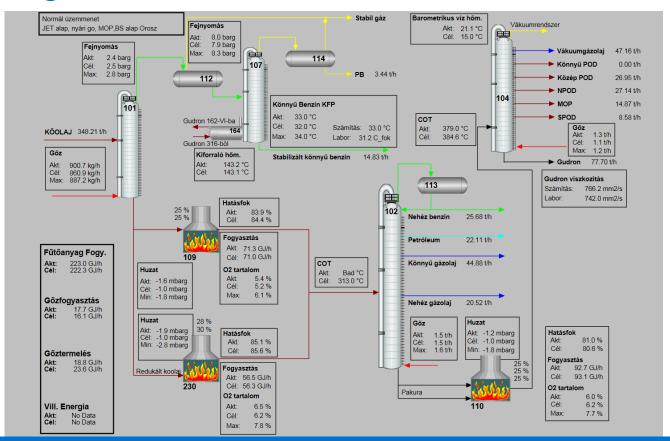
	Energy Cons COR	249.04598999023438			
T	CENERGY Cons RAW	240.35787963867188			
₹ 💠	Energy Cons Target BP	219.09304809570313			
T	Calculation Formula	Formula Analysis Calc (Table LookUp)			
	Description	DAV2 Fütöanyag felhasználás (üzleti terv			
T	Engineering Units	GJ/h			
T	CookUp Date	9/30/2015 1:21:00 PM			
T	LookUp Formula	157747			
T	■ PI Tag	DAV2_EKPI_UNIT_FUEL_CONS.BP			
T	Energy Cons Target OT	240.04478454589844			
₹ 💠	Energy Cons Target RP	229.64166259765625			
Catego	ry: Data for Aggregation				
Catego	ry: Feed				
Catego	ry: General Attributes				
Ī	■ Block ID	DDESTB			
T	■ Block Name	Desztilláció			
T	Element Name	DAV2 Futoanyag Fogyasztas			
T	■ Energy Type	FUEL			
T	■ Unit ID	DAV2			
I	■ Unit Name	Atm. és Vákuumdeszt. 2.			
T	■ Usage Type	CONS			

EMS expert system in PI System

On-line trends


On-line and archive values can be displayed on PI Coresight screens

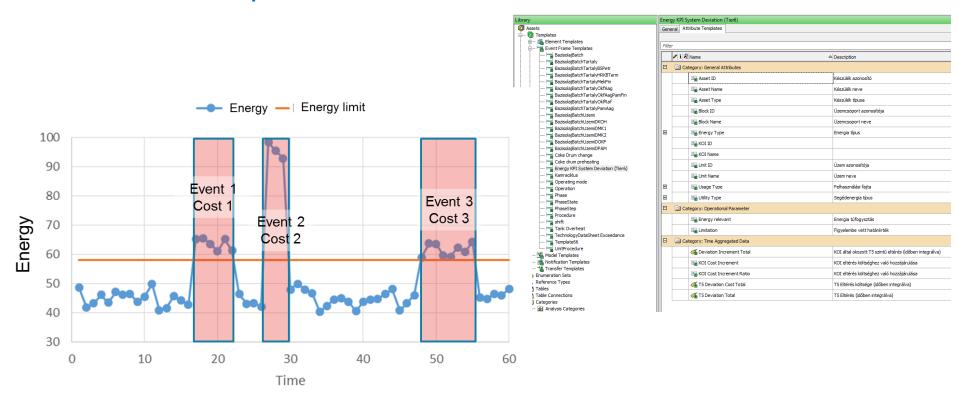
Reports


The performance of assets and units are evaluated based on Event Frames calculation

Notifications

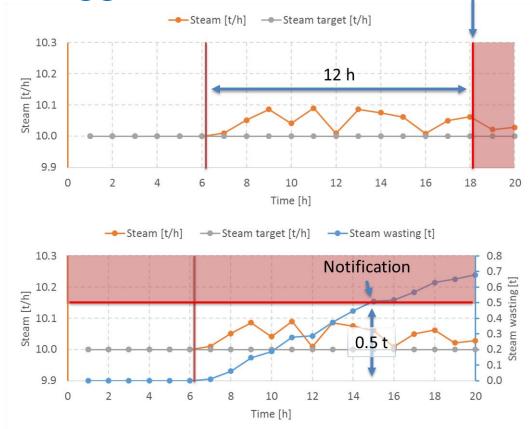
Alert system is created in Notifications to indicate the significant energy wastes

PI Coresight screens



PI Coresight screens based on AF template

- PI ProcessBook (PI PB) graphics linked to AF templates
- The AF structure was converted easily into PI PB display
- The display is published in PI Coresight


				Klegyeniltet értéi	Nyers értékek		
			Ozleti terv	Gördülő terv	Těny	EMS cél	Tény
DAV1 Uzem	Betáplálás	t	2753.91	2733.33	2742.03		2752.03
	Energia	Guit	0.96	0.96	0.98	0.90	0.99
DAV1 Elektromos Fogyasztas		kWhit	8.80	8.80	8.92	9.10	8.90
DAV1 Futoenyag Fogyasztas	GJIt	0.81	0.81	0.86	0.75	0.83	
DAV1 Goz Fogyasztas	GJIt	0.13	0.13	0.13	0.12	0.13	
DAV1 Goz Futesi celu felhaszr	GJ/mo	1300.00	1300.00	2377.00	470.90	470.86	
DAV1 Goz Termeles	GJIt	0.06	0.06	0.06	0.06	0.06	
			Klegyeniltet értékek			Nyers értékek	
			Ozleti terv	Gördülő terv	Těny	EMS cél	Tény
DAV2 Uzem	Betáplálás	t	7789.03	8105.00	8376.47		8423.64
	Energia	Guit	0.72	0.73	1.25	0.74	0.75
DAV2 Elektromos Fogyasztas	kWhit	7.80	7.00	6.57	6.44	6.55	
DAV2 Futoenyag Fogyasztas	GJIt	0.68	0.68	0.70	0.68	0.68	
DAV2 Goz Fogyasztas	GJIt	0.06	0.05	0.05	0.05	0.05	
DAV2 Goz Futesi celu felhaszr	GJ/mo	1400.00	1400.00	3913.46	1673.39	1673.76	
DAV2 Goz Termeles	GJIt	0.09	0.07	0.05	0.06	0.05	
		Klegyeniltet értékek			Nyers értékek		
			Ozleti terv	Gördülő terv	Těny	EM8 cél	Tény
DAV3 Uzem	Betáplálás	t	9973.75	10480.83	10020.62		9940.81
	Energia	Guit	0.68	0.68	0.67	0.69	0.65
DAV3 Elektromos Fogyasztas	kWhit	8.00	8.00	6.71	7.66	6.68	
DAV3 Futoenyag Fogyasztas	GJIt	0.68	0.68	0.68	0.72	0.67	
DAV3 Goz Fogyesztes (0.07	0.07	0.06	0.07	0.06
DAV3 Goz Futesi celu feihasznalas GJ			2300.00	2300.00	2475.53	2736.63	2737.84
DAV3 Goz Termeles	GJIt	0.15	0.15	0.13	0.17	0.14	

Over consumption events

Notifications triggers

Summary

"There are a lot of new things going on in the microprocessor world, including increased focus on power and efficiency."

• MOLGROUP

Michael Dell

BUSINESS CHALLENGES

- A. Dynamics quality specification
- B. Strong focus on energy efficiency
 - ISO50 001
 - NxDSP program
 - Solomon studies (EII, SEC)

SOLUTION

- SQC Statistical based validation system to identify bad quality specification
- B. EMS Operation monitoring tool to identify the energy waste
- C. PI System tools to increase efficiency through turning the data into information.

RESULTS AND BENEFITS

- Automatic quality limit validation system
- 230 000 \$/y energy saving (EMS)
- Decreased energy consumption – 2% YOY
- NxDSP benefit 500-550 mUSD

Contact Information

Lásszló SZABÓ

Iszaboszhb@mol.hu

APC Management Senior

Engineer MOL Group

Questions

Please wait for the microphone before asking your questions

Please don't forget to...

Complete the Online Survey for this session

http://eventmobi.com/emeauc15

감사합니다

谢谢

Danke

Gracias

Thank You

Děkuji

Merci

Köszönöm

ありがとう

Спасибо

Obrigado