

Using PI AF and PI Analytics to Satisfy Demand Fluctuations with Minimum Operational Expenditures

Presented by Anne Leray Sari Ziadé

I- GRTgaz

Key Figures 2014

- □ 32000 km of pipelines
- □ 599 MWh of Installed capacity with 27 compressor stations
- ☐ 640 TWh traded at Points of gas exchange
- Customers:
 - 129 customers shippers
 - 17 Distribution network operators connected
 - 802 industrial customers connected including 12 gas-fired power plant

I- A gaz system player

The Gas System = Gas + Network + IT **Shippers Nominations** Confirmations **GRTgaz** Contractual balancing on a daily basis. Transportation in accordance with the shippers nominations Own consumption forecasts **Adjacent Industrial** Management of the operators residual balancing consumers **TSOs** on a daily basis **DSOs** LNG terminals on an hourly basis. Storage facilities

II - An Integrated PI System

II - GRTgaz : An integrated PI System

III – Business Challenge

Role of the National Dispatching : Daily and Hourly balancing of the gas system

Challenge:

Increase the accuracy of the Line Pack real time calculation Improve knowledge of the system boundaries

IV – The calculation solution

The Grtgaz network is divided into 4 operating areas with each about 15 sub-networks.

Model's Hypothesis

A **Sub-network**: set of pipelines with homogeneous higher heating value and gas density

Block: set of pipelines with homogeneous pressure

$$Z = f(HHV_{ave}; Density_{ave})$$

figures:

- 60 sub-networks
- **500** Blocks
- 1500 pressure sensors
- 250 HHV sensors
- 150 density sensors

High Heating Value

and Density sensor

V – IT Implementation

VI – The IT solution

VII – Exploitation of results

VII – Exploitation of results

VIII - Benefits

A. Business

 Increase Client Performance → Improving the quality of Line Pack Datas published on the user portal and the public data platform

 Increase Economic Peformance → real-time Line Pack is an important input for GRTgaz's real-time optimization & supervising applications

 Increase reliability of the gas system → As an extra level of control for the detection of error in measurement

B. IT

- Easy to use and develop by business
- Update of an existing tool
- No need for the service of a third party company

THANK **Y()**[]

Using PI AF and PI Analytics to Satisfy Demand Fluctuations with Minimum Operational Expenditures

- Increase Client Performance → Improving the quality of Line Pack Datas published on the user portal and the public data platform
- Increase Economic Peformance → real-time Line Pack is an important input for GRTgaz's real-time optimization & supervising applications
- Increase reliability of the gas system → As an extra level of control for the detection of error in measurement

Shaping the future of gas transmission

Results

Business Challenge

- Increase the accuracy of the Line Pack real time calculation
- Improve knowledge of the system boundaries

Solution

