MIMOSA

CBM+ In The Context of Asset Life-cycle Management and Industry Standardization Activities

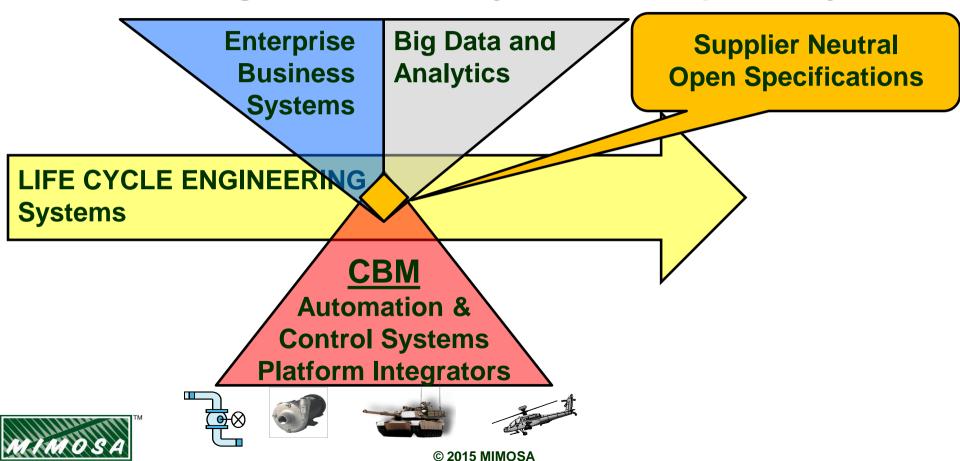
> OSIsoft Federal Workshop Huntsville, AL April 16, 2015

Alan Johnston MIMOSA President ISO TC 184/WG 6 Convener Standards Leadership Council Co-chair

© 2015 MIMOSA

MIMOSA Summary

- Focus on Physical Asset Life-Cycle Management
 - Conceptualization through End of Life
 - > Digital Asset, Physical Asset, Condition, Maintenance and Reliability Management
- Develops and publishes industry-driven standards in alignment with ISO and IEC
- Officially organized as a 501 c(6) non-profit industry association in 1997
- International Membership
 - ✓ Owner/Operators Oil and Gas, Chemical, Aerospace and Defense Sectors
 - ✓ Suppliers/integrators
 - ✓ Academia/Researchers
 - ✓ Industrial Media
- Very Large number of non-member users and project participants
- Founding Member and IP Manager for OpenO&M[™] Initiative
- Founding Member Standards Leadership Council


Key Asset Management Problems in Industry, US Army and Joint Military Services

- > Require improved sustainment & availability, with improved risk management & lower costs
- Increasing complexity of systems and systems of systems
- Increasing regulatory pressure (particularly Safety, Health and Environmental)
- Challenges with Asset Information Management
 - Diversity of often proprietary systems and methods (Aviation, Ground and Sea)
 - Inconsistent practices with Identifier Management (Functional Locations, Assets, Components)
- Handover (Platform Builder to O/O) is often chaotic and inefficient
 - Contracts with Platform Builders are not specific enough with respect to providing all information required for handover to O&M in consistent, machine interpretable formats
 - Digital Asset is never aligned with the Physical Asset
- Condition & Operations Data volume is growing quicker than management methods

Custom Application Development and Traditional Systems integration is too expensive and too fragile with high recurring costs

Critical Intersection for a Supplier Neutral Ecosystem Enabling Multi-domain Systems Interoperability

System of Systems

- A System of Systems (SoS) is a collection of task-oriented or dedicated systems that pool their resources and capabilities together to create a new, more complex system which offers more functionality and performance than simply the sum of the constituent systems. – Wikipedia
- SoS has been developed and is <u>widely used in the aerospace and defense</u> community, but it is <u>now being adopted by many other industry groups</u>
- SoS terminology is linked to the systems engineering community and the International Council on Systems Engineering (INCOSE).
- Interoperability is considered to be an intrinsic part of SoS
 - Proprietary approaches have generally not been sustainable
 - Standards provide the rational alternative

IEEE Interoperability Definition

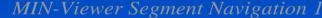
IEEE: The capability...

- of two or more systems or elements to exchange information and to use the information that has been exchanged.
- \checkmark for units of equipment to work together to do useful functions.
- that enables heterogeneous equipment, generally built by various vendors, to work together in a network environment.
- of two or more systems or components to exchange information in a heterogeneous network and use that information.

The Role of Standards in Sustainable Enterprise Solutions

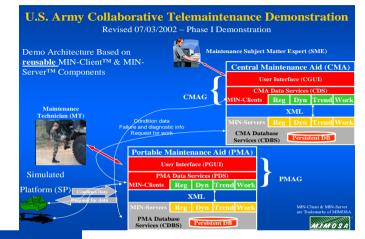
- > Standards help rationalize chaos into widely accepted good practices
- NGO Standards Organizations such as ISO and IEC
- Industry Standards Organizations API, ISA, ASME, SAE, MIMOSA...
- Asset Management Practice Standards
 - Such as PAS 55 and ISO 55000
 - Define good asset management practices to be followed
- IT Oriented Standards
 - Such as MIMOSA, ISO 15926, OPC and ISO 18101
 - Enable SoS to properly support PAS 55 and ISO 55000 series good practices

Background on Solutions Activities Where MIMOSA has Played A Key Role


A Historical Perspective in Development of Pragmatic Solutions using Standards-based Interoperability

Aerospace and Defense Sector – SoS - Model, Monitor and Manage The need for Open Operations and Maintenance Specifications (OpenO&M)

OSA-CBM Dual Use Technology Program -Office of Naval Research



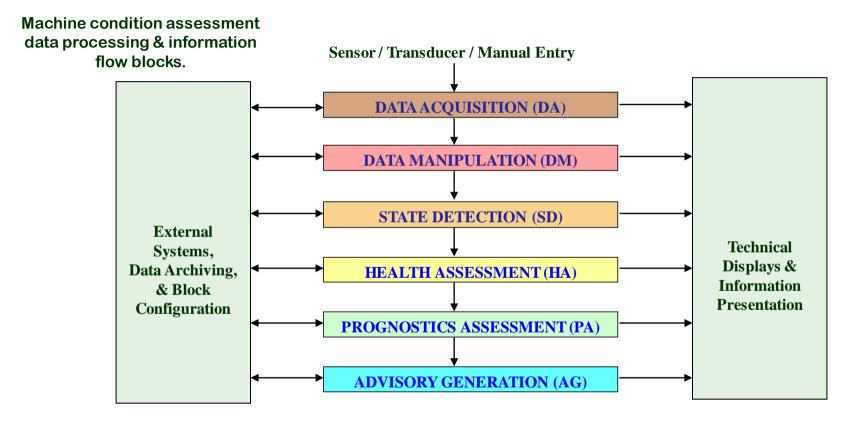
Army Collaborative Telemaintenance – Army CECOM

U.S. Army CECOM Collaborative Telemaintenance Project

Phase I Demonstration Briefing – July 31, 2002 Alan Johnston – MIMOSA Kenneth Bever – MIMOSA Bob Walter – Penn State ARL

MIMOSA

CMA Showing Measurement Events In Alarm


Up Get dat	a Create work	Create work request		Measurement Location: UserTagident- S03-03 Name- S03				
Home Office	Navigati	ion Deta						
P Drive System	Max Alarm	Type	UTC Time	Value	Eng Unit	Scaling		
#1 Aft Syn		Magnitude	2001-11-26T1	0.008400667	Sopetrum Amo	I DMC	- 14	
Clutch As:	i i	Magnitude	2001-11-26T1	0.017452495	Spectrum Amp		-1	
Drive Sha	0	Magnitude	2001-11-26T1	0.469927663	g's (Acceleratio		-1	
Fwed Xonse		Magnitude	2001-11-26T1	1.036288911	Unitieso	RMS	-1	
Planet Ges		Magnitude	2001-11-26T1	0.884841639	g's (Acceleratio	RMS	-1	
Xmsn Ass		Magnitude	2001-11-26T1	0.9	Unitiess	RMS	-1	
Xmsn	0	Magnitude	2001-11-26T1	1.063	Unitless	RMS	-1	
🌵 🚺 Gear a		Magnitude	2001-11-26T1	1.013746006	Unitiess	RMS	-1	
@ m	1	FFT	2002-07-16T1_		Hertz (Units Pe			
- <u>(0</u> ms		FFT	2001-11-26T1.		Hertz (Units Pe			
S Ge		FFT	2001-11-26T1.		Hertz (Units Pe			
Power Plant	9	FFT	2001-11-26T1_		Hertz (Units Pe	Peak		
Rotor System	9		2001-11-26T1 2001-11-26T1		Hertz (Units Pe	Peak	-	
Air Frame	9	FFT	2001-11-26T1.		Hertz (Units Pe			
- Flight Controls		FFT	2001-11-26T1.		Hertz (Units Pe			
A Dadas Madas			2001-11-26T1.		Hertz (Units Pe	Peak		
Work requests:								
Work Request ID	Date	[Priority Code		From		Type	
100	2002-07-30T16:1	3 7	7		David McClard Mai		ntenance	
201	2002-07-31T11:0	3 0	0		David McClard Mai		intenance, Corre	
302	2002-07-31T11:15		0		David McClard Main		ntenance	

ISO 13374 Standard

August 2009

ISO TC 184/WG 6

UNCLASSIFIED

Data Warehousing Architecture

Where we are Today

- Vetted MIMOSA OSA EAI CRIS
 - Recommend as the Persistence Layer at LOGSA
- Implemented LOGSA Taxonomy in MIMOSA type tables
- Participating in LIA PoE
 - Providing "Enterprise Common CBM DW"
- Began Integration of AMCOM CBM DW into the LOGSA Enterprise Common CBM DW 12/31/2007
- Integrated COBRA data with LOGSA Enterprise Common CBM DW 07/08/2008

Action Plan 09

- Exercise the LOGSA
 Enterprise Common CBM
 DW
 - Analytical Analysis
 - Enterprise Data Mining
 - Oracle BI
- Develop the following tools
 - Platform Integration Management Module
 - Taxonomy Management Tool
 - Enterprise My CBM+ tool

USAMC LOGSA - SUPPORTING WARFIGHTERS GLOBALLY!

UNCLASSIFIED

LOGSA UPDATE TO AMC CBM+ SUMMIT 14-15 January 2009

UNCLASSIFIED

UNITED STATES ARMY LOGISTICS

UNCLASSIFIED

ALWAYS THERE.

CBM+ IT Bridging Infrastructure

25 Sep 2012

Ken Beam U.S. Army Logistics Innovation Agency https://lia.army.mil

ALWAYS READY.

UNCLASSIFIED

UNITED STATES ARMY LOGISTICS

UNCLASSIFIED

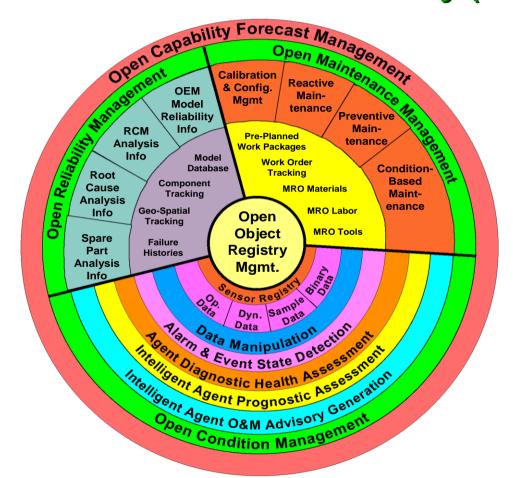
ALWAYS THERE.

Acquisition Manager's Guide to CLOE/CBM+ (AMG2CC) And Dashboard

AMG2CC Conference

25 February 2015

U.S. Army Logistics Innovation Agency https://lia.army.mil

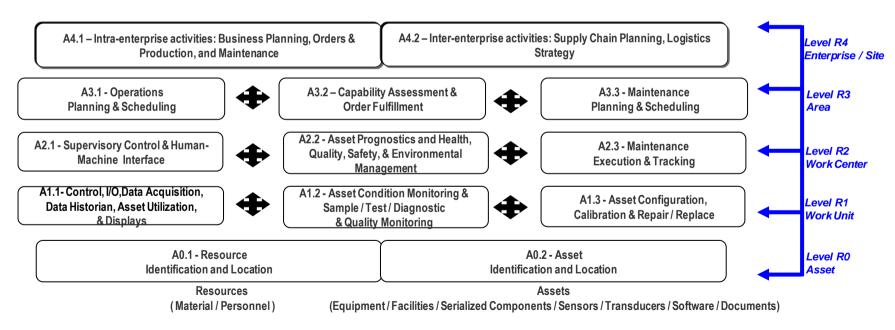


ALWAYS READY.

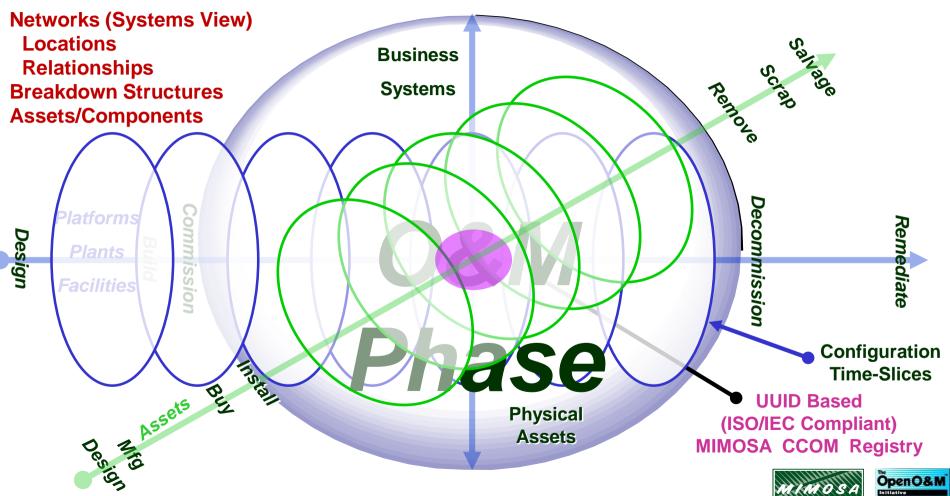
MIMOSA Open Systems Architecture Information Domain Summary (2007)

Real-time Systems

Formed 2006



ISO 18435 - 1 Application Domain Integration Diagram


Application Domain Integration Diagram

ISO TC 184/WG 6

MIMOSA CCOM Asset Information Model

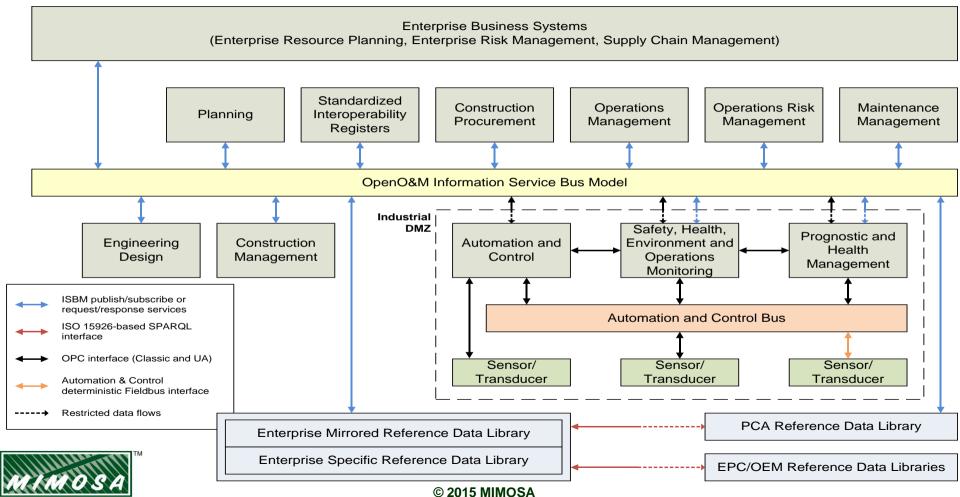
Key Objective

Transforming <u>From:</u> Systems Integration <u>To:</u> System of Systems Interoperability

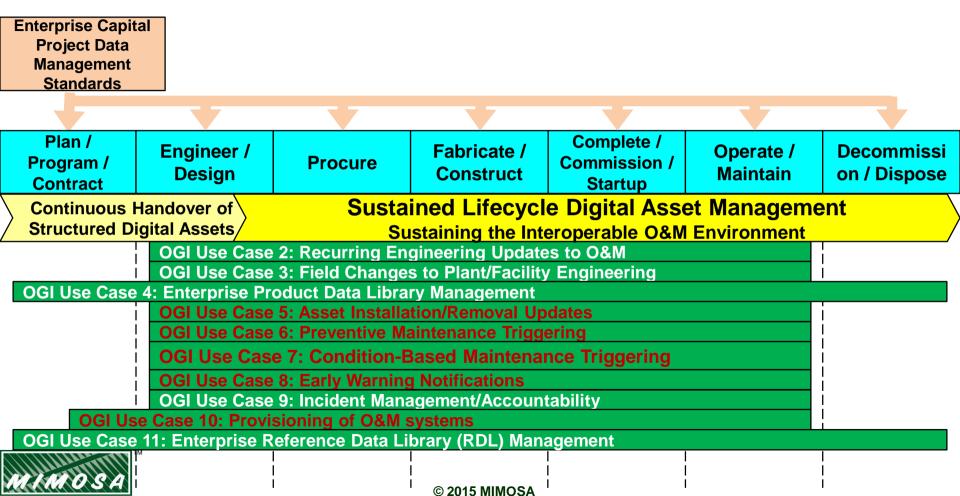
Custom Systems Integration

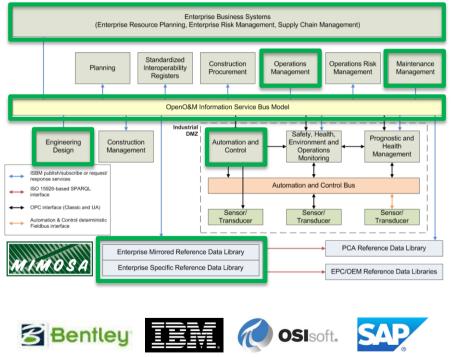
Open Industrial Interoperability Ecosystem (OIIE™)

OGI Pilot™ Building an OIIE Instance

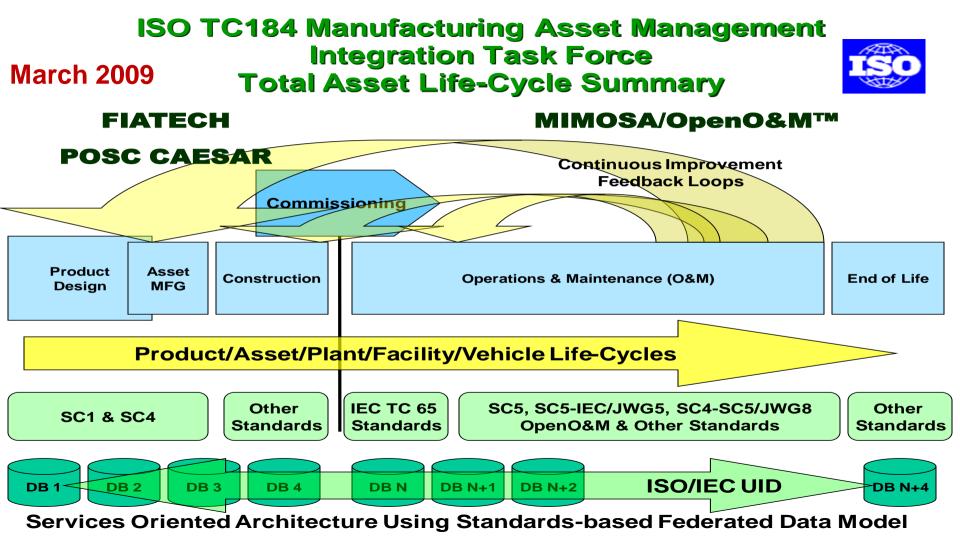

- •Custom development •Application Specific data adapters •Owner/operator responsible for sustainment
- •Too Expensive and Too Fragile

•Commercial off the Shelf (COTS) Applications


- •Standardized OIIE Adapters (Plug and Play)
- •Cloud Friendly Solutions Architecture
- •Configuration rather than customization & integration
- •<u>Defined by</u>, published supplier neutral open standards


Simplified OIIE Systems Architecture

OGI Pilot Business Use Cases Roadmap - Part 2



The BP interoperability PoC As Presented at Fiatech Conference 04/15/2015

- Testing has demonstrated capability to deliver interoperability through shared reference data and standard connectors
- Fully integrated testing of PoC scope is ongoing as vendors complete development of standard product adaptors
- We have proved the concept, but collaboration required to deliver benefits at industrial scale
- A pure instance of the OIIE
 No custom systems integration required
 Functional locations, assets, relationships
 CCOM 4.0 exchange payload optimization

Lessons Learned

- Physical Asset Life-cycle Management (ALM) is increasingly critical for all asset intensive organizations
- CBM and Asset Performance Management (APM) need to be performed in the context of ALM for maximum benefit
- Traditional systems integration techniques are proving inadequate for ever more complex systems of systems
- > Commercial off The Shelf (COTS) solutions are preferable when:
 - A high percentage of user requirements are met without customization
 - COTS suppliers support appropriate standards to enable systems interoperability rather than systems integration

> A Standards-based Interoperability Ecosystem is the way forward

Close

OllE and OGI Pilot To Be Featured At Future Events Fiatech Technology Showcase – April 13-16, Boca Raton Resort, FL Solutions 2.0 – August 3-7, 2015, Westin Galleria, Houston, TX

Hundreds of Senior Experts from Asset Intensive Industries (including aerospace, integrated energy and critical manufacturing) are Auditing and/or Participating in the OIIE and OGI Pilot.

All OIIE and OGI Pilot Working Documents are available at

www.mimosa.org

Alan T. Johnston MIMOSA atjohn@mimosa.org

© 2015 MIMOSA