

A Bigger Piece of the PI Providing Tools to Improve the Distribution PI System

Presented by Tim Amon Ryan Lee

© Copyright 2015 OSIsoft, LLC

Agenda

- About Consolidated Edison Company of New York
- PI System Overview
- Features and Tools
- Operational Example
- Growing and Improving the System
- Next Steps

Energy for New York City And Westchester

- 3.36 million electric customers
- 36,000 miles of overhead transmission and distribution lines
- 94,000 miles of underground transmission and distribution lines
- Record System Load: 13,322 MW
- 1.1 million gas customers
- 4,300 miles of gas mains
- 1,700 steam customers
- 105 miles of steam mains and lines

conEdison

690 MW of regulated generation

Steam

PI Systems Overview Electric

······

Distribution PI System Quick Facts

- PI System Implementation
 - Phase 1: Completed April 2014
 - Phase 2: Asset Framework April 2015
- 1.5 Million PI Tags
- Data from SCADA Master and other legacy systems

Expansive Distribution System

- 2000 Overhead Reclosers
- 200 Underground Sectionalizing Switches
- 239 Unit and Multi-Bank Substations
 - 4kV Primary Grid System
- Others
 - Photovoltaic Sites
 - Network Protectors
 - Pole Top Voltage Regulators
 - Load Tap Changer Monitoring

Features and Tools For Empowering Users

- Training and Customer
 Involvement
- Developing New Features
 - Improve User Friendliness
 - SCADA Mimic Displays
 - Email Notifications
 - Calculations and Formulas
- PI Coresight

Which Station is this?

Ethsta

Ethelrige Station

PI Asset Framework (AF) The Foundation

- Meaningful Station Names and Descriptions
- Intuitive Hierarchy
- Static Data
- Building-Block for Tools and Features

Elements								
	General Child Bements Attributes Ports	Version						
E- Brons						Group by: 📰 Çategory 📰 Template		
- Gl 018 - Berouch Hall	Filter		ρ -	Name:	A PHASE CURRENT			
- 🗊 028 - Park Slope	/ t = Name	A Value	8	Description:				
- 😭 038 - Crown Heights - 🚭 048 - Rethush	a A PHASE CURRENT	51 A		Configuration Jerr.				
- 3 058 - Ridgewood	C A PHASE PowerFactor	0		Çategories:	Amps	2		
- G 068 - Williamsburg	C A PHASE VOLTAGE	0 V		Default UOM:	атреге			
- g 000 - Bay Ridge	I C AL Preser	0 kVA		Value Type:	Double			
- 🗇 108 - Sheepshead Bay	a di ba dha al	ha.		Value	61.A			
- 3 118 - Brighton Beach		7420		Data Reference	D Duine			
H- 🗇 Brooklyn 4kV Grids	B PHASE CURPENT	SC A		Care Docence.	FIFOR			
G- 🖉 Överhead Swäches	B PHASE PowerFactor	0			Setting			
B- 0 1001	CONTAGE	11 V		WELECOPS-PIPR	0D/1004_2748 - A PHASE	CURRENT		
- B 1002	🖬 🍼 Battery Test	8T_off						
B- 10025	C PHASE CURRENT	54 A						
- C 2601	C PHASE PowerFactor	0						
- 👩 2602	C PHASE VOLTAGE	ov						
2610	Communication	ISIN						
- 2050	Continuous key mode	0	111111					
- 3 2651	B CTS delay time in sec	0						
- 6 2653	E Constanting and the same PY			•				
- 🗊 2654		u ov						
2057	- Act the tag	RE_GE						
- 3 2714	- China	ORVA						
- 6 273	KYA B	168 kVA						
R- C Understand Switches	🗏 🍼 KVAC	ORVA						
HTM DAS	🗏 🍼 KVAR A	0 KVAR						
- J Manhattan	🛛 🍼 KVAR B	101 KVAR						
- Colema	📕 🍼 KVAR C	0 KVAR						
a⊢ 🗃 Wedtheder	Ø KWATLA	0kW						
	🖷 🍼 KWATT B	-106 kW						
	B 🝼 KWATT C	0kW						
	 Il Leostion 	Jurnian St. Bet, Lavonin Ave, & Roverdale Ave.						
	Ø NEUTRAL PHASE CURRENT	7A						
Dements	C OC Lockout Phase A	Ocnom						
Event Frames	B COC Locka & Phase B	Genom						
Deary	C OC Lorison Phase C	Ornum						
Heit of Mesoure	B III Dub Laborh	40.662306						
There of measure	- on the region	40.005.00		253				

2748 Modified:3/18/2015 4:30:33 PM. Version: 1/1/1970 12:00:00 AM, Revision 2

Email Notifications

For Real-Time Awareness

- Engineering and Maintenance Alerts
 - Breaker Status
 - RTU Offline
 - Battery Voltage
 - Current Imbalance
- Easily Configurable
- Template Based

PI Calculations For "Better" Data

- Transformer Dynamic Rating
 - Real-Time Transformer
 "Health" based on temperature
- SCADA Corrections
 - Correct for Metering Errors
- Total kW Loading

conEdison

 Monitor a Load Area and Detect Outages

Corrected SCADA Data

conEdison

Heat Event 2015 The PI System for Operational Support

- DE Situation Room
 - PI ProcessBook Mimics
 - Real-time Event Analysis
- Post Event Analysis
 - PI DataLink
 - New Calculations and Alerts

Heat Event 2015 PI ProcessBook Display

Growing the Electric Distribution PI System

- Official Distribution Historian
- Replacing Legacy Systems
- One Source for Data Management and Information
- Used Extensively During our ICS and CERC Events

Next Steps

- Transition to latest PI System Applications
- Expanding and Growing
- Automating Display Update Process

The PI System as more than a Historian

COMPANY and GOAL

Con Edison is the Energy Provider for NYC and Westchester, and wanted to improve our data collection and management on the electric distribution system.

\checkmark

CHALLENGE

Multiple Legacy SCADA and Data Collection systems that are not as flexible.

- Different systems managed by different teams
- Difficult to implement changes and limited tools available for users

SOLUTION

The PI System offered an easily configurable and flexible system to consolidate and improve these systems.

- PI Coresight allows information to be quickly and easily captured; empowering our users
- PI is a central data source, which can feed automatic notifications, calculations, etc.

RESULTS

The PI System tools and features allow us to do proactive and real-time response to system events.

- Email alerts allows immediate notification, and proactive response.
- Improve the way engineers and operations view and analyze data

conEdison

Contact Information

Tim Amon

amont@coned.com Engineer Con Edison

Ryan Lee

leery@coned.com Engineer Con Edison

Questions

Please wait for the microphone before asking your questions

State your name & company

Please don't forget to...

Complete the Survey for this session

'he **Power** of **Data**

Evaluation Form (Seminar Location - Date)

Name: Company:				
Email:				
Quality and content of the presentations		Good	Excellen	nt N/A
Welcome	\circ	\circ	\circ	\circ
The Journey To Real-Time Operational Intelligence	\circ	\circ	\circ	\circ
The Power of Connection		\circ	0	\circ
Tank Level Management System		\circ	\circ	\circ
Using the PI System to Aid in Troubleshooting Operational Aspects of Oil and Gas Well Drilling and Completion	\circ	\bigcirc	\circ	\circ
Unleash your Infrastructure	\circ	\circ	\circ	\circ
Information on the Spot	\circ	\circ	\circ	\circ
Wrap-up/Seminar Conclusion	\bigcirc	\bigcirc	\circ	\circ
Quality and organization of the seminar				
Choice of date	\circ	\circ	\circ	\circ
Time allowed for lunch/breaks	\circ	\circ	\circ	\circ
Choice of presentations		\circ	\circ	\circ
Rece and time allowed for the presentations	\cap	\sim	\sim	\sim

© Copyright 2015 OSIsoft, LLC