

Distance to Fault

The PI System and ESRI Geospatial system supporting real time operational decision making

Presented by **Neil Goundar - Dimension Software Hasthrika Jayasuriya - Transpower**

Agenda

- Who we are
- Business problem
- Solution
- Technical overview
- Live demo
- Conclusion and next steps

Dimension Software

- Specialist PI Systems Integrator providing advanced solutions including:
 - PI System end to end
 - Design and project management
 - Software development (web, mobile, desktop, reports)
 - Analytical engines
 - Customised training and support

Transpower New Zealand

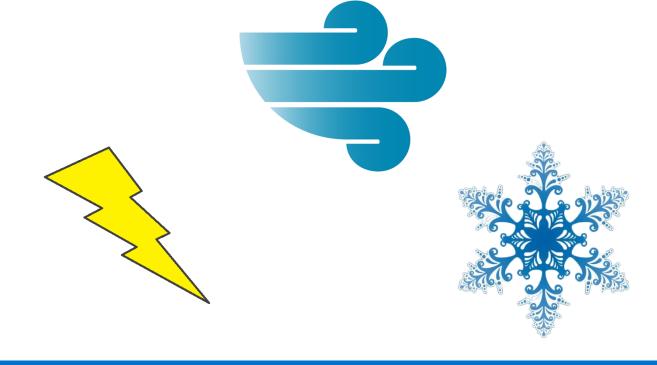
- Owner and operator of the National Grid
- State owned enterprise
- 12,000 km of transmission lines
- 180 substations
- Implemented the PI System in 2006
- OSIsoft Enterprise Agreement customer
- Approximately 400,000 PI tags

Distance to Fault history

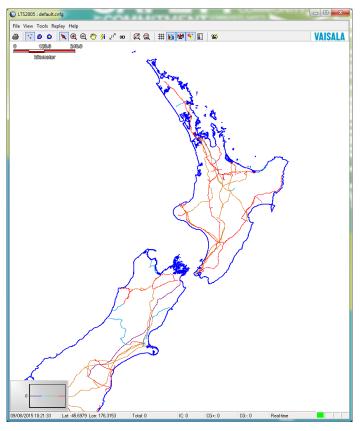
Nomograms

Re-evaluate operational decisions

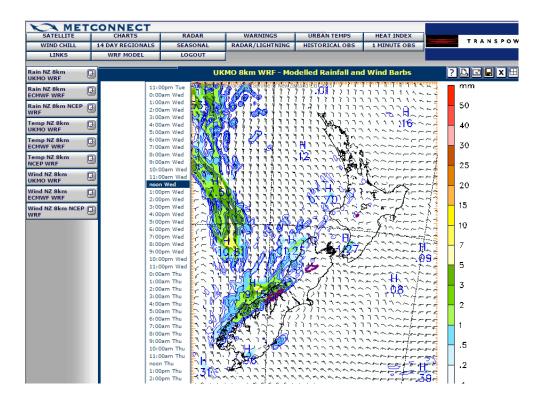
- Public place data with nomograms
- Distance to Fault


Nomograms

1		_			_			
A	В С	D	E	F	G	Н	1 ,)
Imported ACI Data	Fault Location ADD-ISL	<u> </u>		Data Buffer Cells		0		
Rows in Buffer	60			Sorted Data Cells		0	Site Column	1
Number of Columns	16 Circuit Column	1	12	Row Difference	0			
Automatic Branch Data	Circuit Name	ADD-ISL-2						
Total Branch Length (km)	8.580				Relay +ve Seq Imp Setting (Ω)?	Extract Stations		
Number of Towers	DATE YYYYMMDD	20070801	Branch Start:	ADD	2.106	ADD		
Total Branch +ve Seq Imp (Ω)	2.106∟82.16° Ω					ISL	Line Reacta	ince X (Ω):
Relay Fault % Reading?	0.00%		Branch Finish:	: ISL	2.106	2		2.0863
	DESCRIPTION COB_IDENT	DESCRIPTION		E CONDUCTOR_TYPE	BUNDLE_COUNT	POS_SEQ_IMPEDANCSPAN		REACTANCE POS
ADD-ISL-2	Addington Islingt MMS:10245230	ADD-ISL-A-ADD-0000A-Conductor-ADD-ISL-2	SING	ZEB	2		37.63	0.0091
	Addington Islingt MMS:10193210	ADD-ISL-A-0001-0002-Conductor-ADD-ISL-2	DOUB	ZEB	2	0.021	85.51	0.0208
	Addington Islingt MMS:10193213	ADD-ISL-A-0002-0003-Conductor-ADD-ISL-2	DOUB	ZEB	2	0.042	171.29	0.0416
	Addington Islingt MMS:10193216	ADD-ISL-A-0003-0004-Conductor-ADD-ISL-2	DOUB	ZEB	2		164.08	0.0399
	Addington Islingt MMS:10193219	ADD-ISL-A-0004-0005-Conductor-ADD-ISL-2	DOUB	ZEB	2	0.0201	106.34	0.0259
	Addington Islingt MMS:10193222	ADD-ISL-A-0005-0006-Conductor-ADD-ISL-2	DOUB	ZEB	2		146.27	0.0356
	Addington Islingt MMS:10193397	ADD-ISL-A-0006-0007-Conductor-ADD-ISL-2	DOUB	ZEB	2		182.35	0.0443
	Addington Islingt MMS:10193399	ADD-ISL-A-0007-0008-Conductor-ADD-ISL-2	DOUB	ZEB	2		172.56	0.042
	Addington Islingt MMS:10193401	ADD-ISL-A-0008-0009-Conductor-ADD-ISL-2	DOUB	ZEB	2		167.21	0.0407
	Addington Islingt MMS:10193403	ADD-ISL-A-0009-0010-Conductor-ADD-ISL-2	DOUB	ZEB	2	0.0307	125.25	0.0305
	Addington Islingt MMS:10193405	ADD-ISL-A-0010-0011-Conductor-ADD-ISL-2	DOUB	ZEB	2		141.07	0.0343
	Addington Islingt MMS:10193407	ADD-ISL-A-0011-0012-Conductor-ADD-ISL-2	DOUB	ZEB	2		147.15	0.0358
	Addington Islingt MMS:10193409	ADD-ISL-A-0012-0013-Conductor-ADD-ISL-2	DOUB	ZEB	2		158.3	0.0385
	Addington Islingt MMS:10193411	ADD-ISL-A-0013-0014-Conductor-ADD-ISL-2	DOUB	ZEB	2	0.0551	224.59	0.0546
	Addington Islingt MMS:10193413	ADD-ISL-A-0014-0015-Conductor-ADD-ISL-2	DOUB	ZEB	2	0.0462	188.19	0.0458
	Addington Islingt MMS:10193415	ADD-ISL-A-0015-0016-Conductor-ADD-ISL-2	DOUB	ZEB	2		186.08	0.0452
	Addington Islingt MMS:10193417	ADD-ISL-A-0016-0017-Conductor-ADD-ISL-2	DOUB	ZEB	2	0.0442	179.88	0.0437
	Addington Islingt MMS:10193419	ADD-ISL-A-0017-0018-Conductor-ADD-ISL-2	DOUB	ZEB	2	0.0482	196.19	0.0477
ADD-ISL-2	Addington Islingt MMS:10193421	ADD-ISL-A-0018-0019-Conductor-ADD-ISL-2	DOUB	ZEB	2		72.61	0.0177
ADD-ISL-2	Addinaton Islinat MMS:10193423	ADD-ISL-A-0019-0020-Conductor-ADD-ISL-2	DOUB	ZEB	2	0.04	163.13	0.0397



What caused the outage?

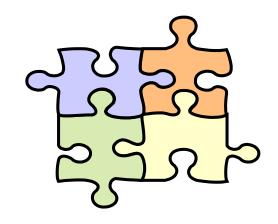

- Lightning
- Wind
- Snow


Lightning monitoring system

Weather monitoring system

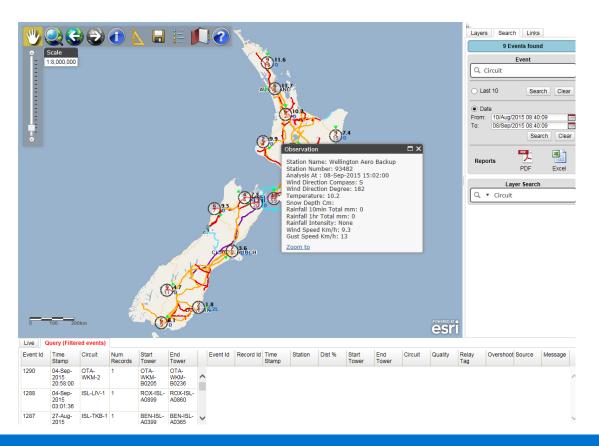
Spatial system

The problem


Multiple systems required to make operational decisions

- Distance to Fault
- Lightning Data
- Weather Data
- Spatial Asset Data
- Standalone systems were not ideal

Spatial Distance to Fault


- One place to look to see the whole picture
- Ability to see where the fault may be instantly
- One system tailored for one purpose
- Less chance of user error

UKMO 8km WRF - Modelled Rainfall and Wind Barbs Before... 50 1:00pm Wed 40 2:00pm Wed 3:00pm Wed 4:00pm Wed 30 5:00pm Wed 6:00pm Wed **Fault Location Calculator Likely Fault Location:** 8:00pm Wed 20 Distance to Fault Percentages (as a percentage) Start Looking at Tower: Finish Lookii 50.000% 0027 Distance to Fault Percentage 1 (%) ADD End: 0030 0:00am Thu 1:00am Thu 2:00am Thu 0044 0042 Distance 10 VAISALA MCS AND FORD BOADWES BLN-STK-A0009 BLN:STK-A0010 BLN-KIK'A001 3BLN-KIK-A0010 BLN-KIK-A0009 BLN-KIK-A0008 BLN-KIK-A0007 BLN-KIK-A0006 BLN-KIK-A0005 BLN-KIK-A0004 1 1 BLN-STK-A0004 BLN-STK-A0003 BLN-STK-A0002 BLN-KIK-A0002

After

Electricity industry concepts

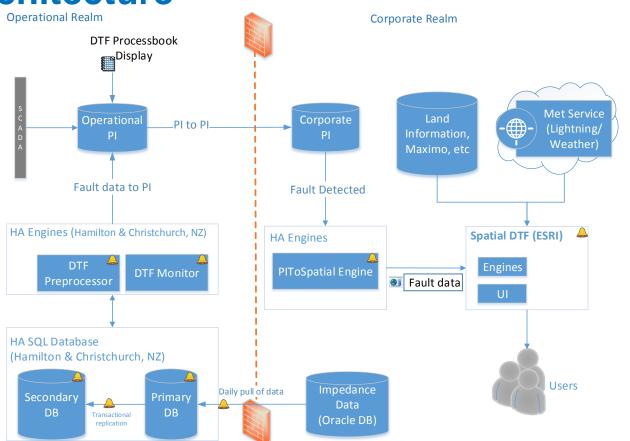
Towers - aka pylons

- Span the line length between 2 towers
- Circuit electrical connection between 2 substations

 Protection relay - trips a circuit breaker when a fault is detected

DTF concepts at a glance

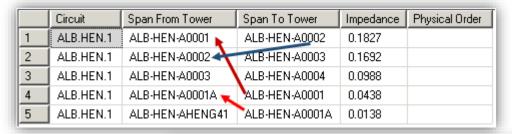
- Protection relay's send the distance percentage to a fault
- Fault detection is based on
 - A distance percentage received in PI
 - Circuit breaker OPEN state in PI



 Tower patrol range calculation is based on detailed circuit impedance data from an Oracle database

Technical requirements

- Real time
- Fully automated
- 24/7 availability
- Advanced calculations to answer the question 'Where do I dispatch people to patrol, when a fault happens?'
- Geographical display of faults with lightning data, weather data, land and asset type information


Architecture

- Fully HA
- Operational
- Corporate
- **ESRI**

Impedance data

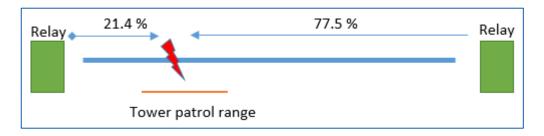
DTF Preprocessor engine orders impedance data according to how towers are physically connected

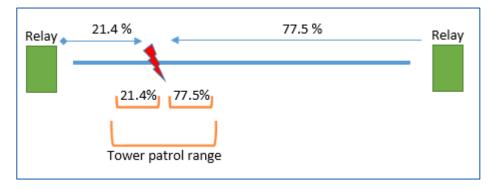
	Circuit	Span From Tower	Span To Tower	Impedance	Physical Order
1	ALB.HEN.1	ALB-HEN-AHENG41	ALB-HEN-A0001A	0.0138	1
2	ALB.HEN.1	ALB-HEN-A0001A	ALB-HEN-A0001	0.0438	2
3	ALB.HEN.1	ALB-HEN-A0001	ALB-HEN-A0002	0.1827	3
4	ALB.HEN.1	ALB-HEN-A0002	ALB-HEN-A0003	0.1692	4
5	ALB.HEN.1	ALB-HEN-A0003	ALB-HEN-A0004	0.0988	5

19

Fault detection and calculations

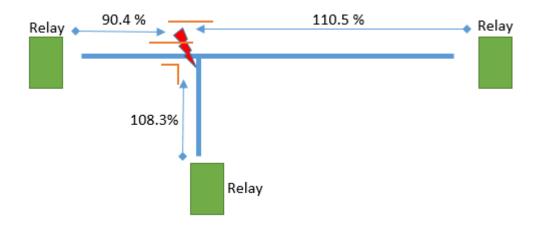
- DTF Monitor engine
 - Detects faults


Calculates tower patrol ranges on a circuit



Tower patrol ranges to PI as Events and Records

Advanced calculations


2 terminal circuit

Advanced calculations cont...

3 Terminal circuit

DTF Events and Records

 Records represent each individual distance percentage sent by a protection relay

Time Stamp	Station	Dist %	Start Tower	End Tower	Circuit
12-Mar-2015 15:04:29	HLY	98.29994965	SFD-TMN- A0032	SFD-TMN- A0001B	HLY-SFD-1
12-Mar-2015 15:04:33	HLY	105.75000763	SFD-TMN- A0023	SFD-TMN- A0001B	HLY-SFD-1

 Multiple records are grouped as the same Event if they are on the same circuit and within 2 minutes of each other

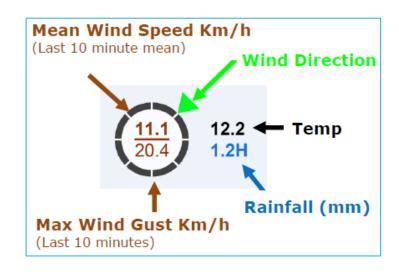
Time Stamp	Circuit	Num A Records	Start Tower	End Tower
12-Mar-2015 15:04:29	HLY-SFD-1	2	SFD-TMN-A0032	SFD-TMN- A0001B

Fault information to ESRI

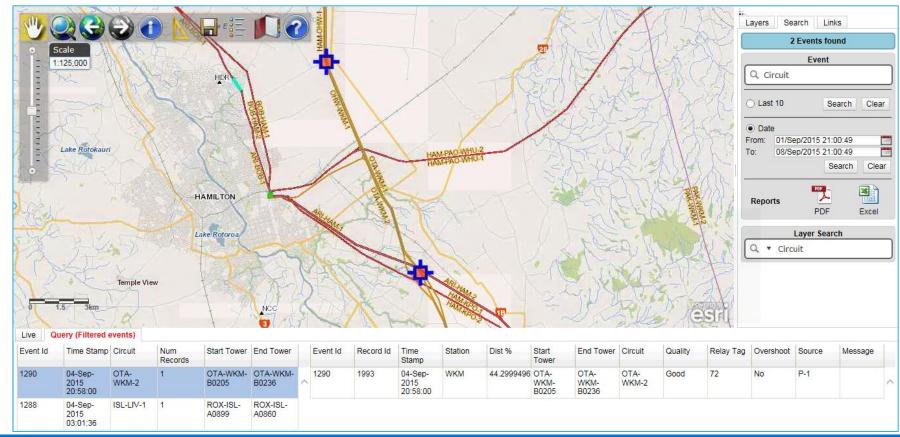
PIToSpatial engine composes the records and events as JSON messages

 Delivers the JSON message to a REST endpoint in ESRI

```
"DTFEvent":{
    "Fields":{
         "Timestamp": "2015-09-04T03:01:36",
         "Circuit": "ISL-LIV-1",
         "ID":1288,
         "StartTower": "ROX-ISL-A0899",
         "EndTower": "ROX-ISL-A0860",
         "NumRecords":1
"DTFRecord":{
    "Fields":{
        "Timestamp": "2015-09-04T03:01:36",
        "ID":1991.
        "EventID": 1288,
        "StartTower": "ROX-ISL-A0899",
        "EndTower": "ROX-ISL-A0860",
        "Overshoot": "No",
        "Source": "P-2",
        "Message":"",
        "Quality": "Good",
        "Station": "ISL",
        "RelayTag": "472 2",
        "DistPerc": 31.4999504089355,
        "Circuit": "ISL-LIV-1"
```


The ESRI platform

Geographically enhances the records and events


- Associates lightning and weather data to the faults
- Displays faults in real-time with ability to view historical faults

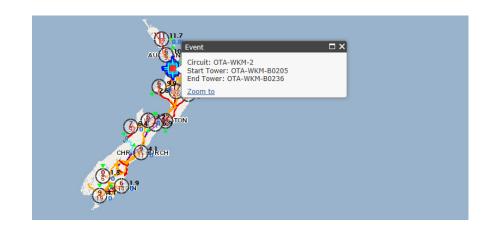
The ESRI platform cont ...

- Different layers of information
 - Live and historic faults
 - Lightning
 - Weather observations
 - Land information
 - Imagery or maps
 - Maximo data to show different assets types on the map

Live demo

Challenges

Clean data was our biggest challenge by far


 Calculations were another challenge as rules were not well defined in the previous manual systems

Where to next?

Fire data

- Strike cast
- Tracking response vehicles
- Implementing the ESRI spatial platform in a HA configuration for 24/7 availability
- More accurate relays have been tested and will be rolled out

Summary

BUSINESS CHALLENGES

- Reliance on manual processes
- B. Analyzing multiple systems to the full picture
- Keeping data up to date

SOLUTION

- Automate the manual processes
- Integrate all relevant data into one platform

RESULTS AND BENEFITS

- Fast and accurate decision making
- Lower chance of user error
- Less training required
- Favourite tool in the operations desk

Contact Information

Neil Goundar

neil@dimensionsoftware.com

Software engineer

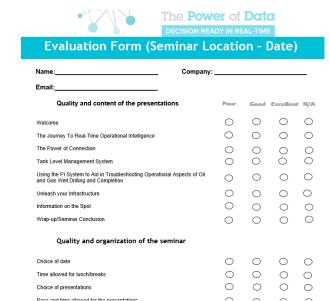
Dimension Software Ltd

Hasthrika Jayasuriya

Hasthrika.Jayasuriya@transpower.co.nz

Applications analyst

Transpower New Zealand Ltd


Questions

Please wait for the microphone before asking your questions

State your name & company

Please don't forget to...

Complete the Survey for this session

감사합니다

Danke 谢谢

Merci

Gracias

Thank You

ありがとう

Спасибо

Obrigado