

Mining, Metals & Materials: Shaping Your Journey to Operational Intelligence

Presented by Lance Fountaine

Company Visions

The OSIsoft Vision

We believe People with Data can Transform their world

Typical Mining, Metals and Materials Vision

Commodity Production: Low Cost Producer

Sustainability: Eliminate / Minimize Risk

Value-Add Production: Products that Differentiate

An Operational Intelligence Strategy: The Marriage of our **Visions**

What Challenges / Opportunities Exist within Mining, Metals and Materials?

Challenge - Market Conditions

- Commodity Market Prices
- New or Improved Operations / Known Technology Competition
- •New, Competitive Manufacturing Technologies

Challenge – Cost Headwinds

- Energy Costs
- Raw Materials Costs
- Labor Costs
- Logistics / Transportation Costs
- Aging Assets / Sustaining Capital Requirements

Other **Challenges**

- •Geology Decreasing Yields on Known Mine Reserves
- Environmental Regulations / Reporting Requirements
- Slow Global Economic Recovery

Opportunities

- Commodity Market Growth in Developing Countries
- Market Pull for New Materials / Alloys (Strength, Weight)
- Sustainable Materials

What If Your Company had the Ability to Leverage Its Current Data Assets to...

Improve Enterprise Visibility and Management

(Operating System)

- Establish and Automatically Report Standard KPIs to Measure Performance
- Support Operations through Global and Regional CoEs (Centers of Excellence) or Remote Operation Centers
- Drive Real-time Action in Support of Operational Excellence
- Rapidly Identify and Leverage Best Practices
- Increase Employee
 Engagement with Continuous

 Improvement Innovation

Improve Awareness and Forecasted Impact of Uncontrollable Factors

- Rising Energy Rates
- Rising Raw Material Costs, Reduced Raw Material Quality
- Rising Water Rates
- Rising Labor Rates
- Cost of Environmental Regulation / Mandates

More Directly Impact Controllable Costs / Performance

- Continuously Improve Process Productivity / OEE
- Better Control Product Quality / Improve Genealogy Tracking
- Extend Life of Critical Assets / Reduce Maintenance Costs
- Reduce Energy / Raw Material / Natural Resource Consumption
- Continuously Improved
 Environmental Performance to
 Meet Regulatory Compliance
 and Reporting Requirements

Why the Need to Re-Evaluate Your Information Platform?

· Real Time and Data from all Data is Correlated in · Analytics are Real time reporting Key Talent are devoted available devices Historical data is easily performed and historical to managing the factors common reports easily accessed trending are readily which drive the bottom is recorded and Talent can develop Talentis historized available line Data is Accurate. and test new optimized Target Data definitions correlations in the Sharing various · Maior excursions are "ad hoc" report space : levels of reporting prevented or reduced (in are common and within and across shared across duration and/or impact) Approved reports can The Data plants plants is be elevated to the · Performance levels are sustainable common space Capability Maturity ABILITY TO MANAGE DATA DATA DATA ANALYTICS REPORTING State AVAILABILITY ACCESSIBILITY CORRELATION RESULTS Optimized and RELIABILITY & Managed NTEGRITY OF PROCESSE & DATA Maturity Defined Repeatable Model RISKOF Initial / **FAILURE** Ad Hoc · Data is available · Data is manually Data correlation · Analytics require Reporting is Key Talent spend time butit's not collected or measuring instead of requires individual individual or limited, manual. collected manipulated or group heroics group heroics managing results and point-in-time Only "point in time" Without Departure of key personnel Data definitions Sharing across Current are unique to each correlation can be correlated data Alcoa plants is not creates gaps in knowledge Analytics are very plant made practical or easily · Ability to prevent or reduce limited in scope achieved Correlation across Historical data is the impact of excursions is lost plant siloes is non- The capabilities highly adhoc existent of Talent are not fully realized

Data to Value: Recognizing the Critical Contributors

People Resources

- •Subject Matter Experts (SMEs)
- Centers of Excellence (CoEs)
- Innovators (Enabled Workforce)
- Change Agents

Tools / Applications

- Visualization Tools
- Application Systems

- Analytical Tools (Big Data)
- Reporting Tools

Data Infrastructure

- Data Collection / Historization
- Data Contextualization / Enterprise Normalization
- Calculations / Rollup / Aggregation

Network Connectivity

- •Ethernet TCPIP / Proprietary
- •Wired / Wifi / Cellular

Sensors / Data Sources

- •loT / IIoT
- Transactional Databases

Calibration

Information and the Operational Intelligence Concept

- Hidden information, problems
- Data in many locations & not easily accessible
- Multiple versions of the truth

Traditional Operating Processes

Operational Intelligence Concepts

- Common platform & tools
- Real-time data transparent, available to all
- Standardized Data Model

- Proactive problems solving to reduce Excursions
- Process modeling & improvements
- Customer connections

Operational Excellence in the 21st Century

How Does Operational Intelligence Drive Results?

Daily/Real-Time Operations

Process Stability/Improvement

Production and Operations Management

Intelligent Action Frequency: Real-time to Daily **Intelligent Analysis** Frequency: Any

Intelligent Reporting / Integration Frequency: Daily to Monthly

Learnings Applied: Manual or Closed Loop

Visual Information / Notification

Learning / Knowledge Expansion

Evaluation / Decision Support

Audience:

- Operators
- Craftsmen
- Supervisors

Objectives:

- Achieve Daily Targets (DMS)
 Situational Awareness
 Resolve Immediate Issues (RCA/Problem Resolution)
 Maintain Schedule/Plan

Audience:

- Process Engineers (Location) Production Superintendents
- CoE Experts (Regional/Global)

Objectives:

- Detect Excursions (Leading)Maintain Process StabilityImprove Productivity

- Improve Quality

Audience:

- Location Managers
- Regional/Global OperationsBusiness Leadership

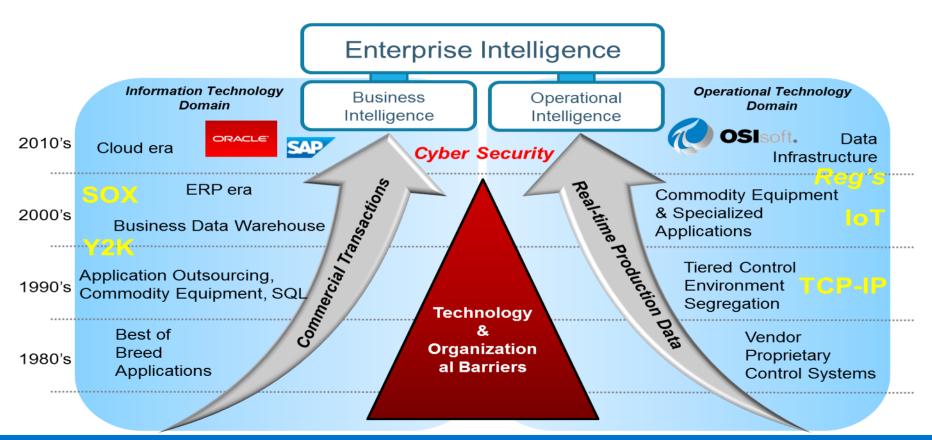
- Objectives:
 Understand/Grade Performance
- Adjust ExpectationsEstablish Plans
- Calculate Forecasts

OSIsoft PI Data Infrastructure

21st Century Operational Excellence: Leveraging Information as a Key Enabler

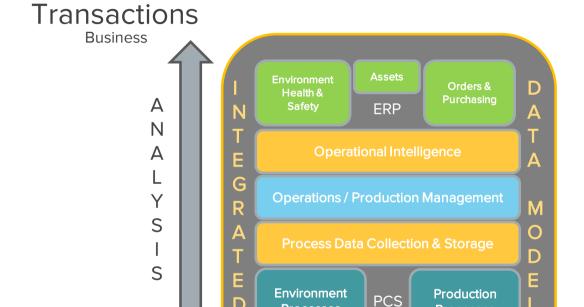
Common Operations Programs

- SPC (Statistical Process Control)
- Lean Manufacturing / Six Sigma
- TPS (Toyota Production System)
- Continuous Improvement / Deming Cycle


Improving Plant / Enterprise Performance Management

- Established / Managed KPIs
- Visibility into Uncontrollable Impacts (e.g., Energy Rate, Raw Material Rate, Metal Prices, etc.)
- Engaged Workforce driving Collective Innovation
- Enabling Platform for Process CoEs (Centers of Excellence)
- Leverage / Adoption of Best Practice

Meeting the Technical Requirements: Recognizing IT / OT Convergence


Recognizing IT/OT Convergence

Defining a Standard Technical Architecture

Processes

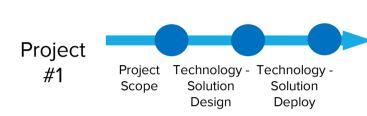
Processes

Definition:

The integration of data with process expertise to enable proactive and intelligent manufacturing decisions in dynamic environments

Key Components:

- 1. REAL TIME and HISTORICAL process data capabilities
- 2. Network / Data integration from shop floor to the enterprise
- 3. Comprehensive analysis toolset(s)


The Architecture Ties Together Information from All Sources within a Plant and Across the Enterprise

Action

Operations

Adopting a Project or Program Approach

Project Based Approach

Typical Scenario:

- Limited Technical Scope (Sources of Information / Tags)
- Fixed Project Timeline
- Working Group: Location Operations Resources working with IT / OT Resources

Pros (often):

- Well Defined, Limited Scope
- Single Design / Deployment
- More Manageable Initial Cost

Project

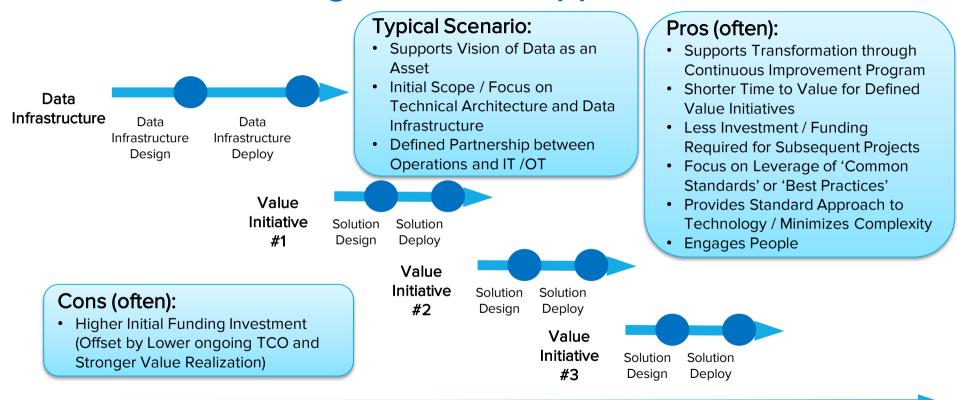
#2

Project Technology - Technology -Scope Solution Solution Design Deploy

Cons (often):

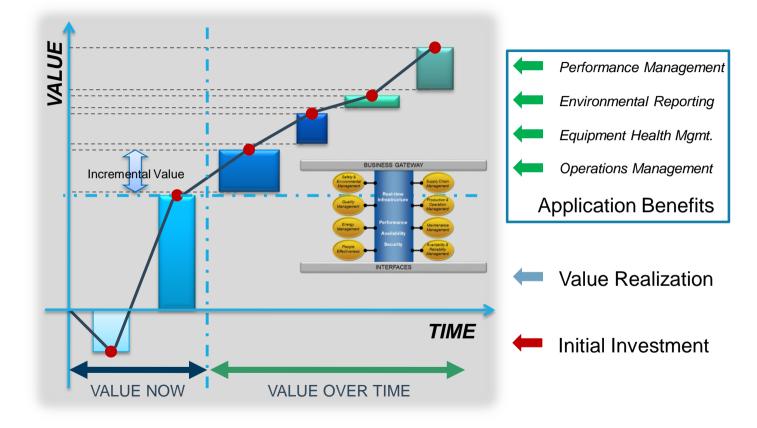
- Site Based, One Off Solutions
- Not Easy to Leverage / Deploy 'Best Practices' or 'Standards' across Multiple Sites
- New Projects Require New Software / New Solutions / New Funding / New Start
- Cost / Complexity Increase Over Time

Project #3


Project Scope

ct Technology - Technology e Solution Solution Design Deploy

TIME


Program Based Approach

TIME

Value Creation – The Project vs. Program Approach

Conclusion

Key Considerations for Today's Session

 What is your vision for the use of information within your company / division?

 What role does OSIsoft PI play as an enabling technology?

 How can OSIsoft help you establish and execute your strategy for success?

Lance Fountaine

LFountaine@osisoft.com

Industry Principal, Mining, Metals and Materials OSIsoft, LLC

Questions

Please wait for the microphone before asking your questions

State your name & company

THANK Y()[]

