

Conservation Voltage Reduction and Smart Meters

Presented by Timothy Schwarz, PE

USERS GROUP

Pepco Holdings, Inc. Quick Facts

- Incorporated in 2002
- Service territory: 8,340 square miles
- Customers served
 - Atlantic City Electric:
 - 545,000 electric
 - Delmarva Power:
 - 503,000 electric
 - 125,000 natural gas
 - Pepco:
 - 793,000 electric
- Total population served:
 5.6 million

Project Driver

- Conservation Voltage Reduction (CVR) pilot mandated by the Maryland Public Service Commission
 - CVR is a reduction in energy consumption that results from a reduction in source voltage
 - Not all loads benefit from CVR
 - Constant impedance loads result in lower energy consumption with lower voltage (incandescent lights)
 - Constant power loads offer no savings since reduction in voltage will just result in higher currents
 - This could be more problematic than helpful since it could reduce equipment life

PI Architecture

PI Architecture

- PI SSN UIQ Interface processes tab separated files from the AMI system to automatically create the PI tags and the AF elements/attributes
 - AF elements are stored in a flat structured database
- PI UFL Interface processes comma separated files from the AMI system to load the actual value data into the PI tags
- PI Tags and AF Elements are indexed according to the service point ID
 - This allows for constant voltage profiles for customers regardless of meter swaps
- PI was built out for all PHI AMI customers for a total of 1.4M elements (NJ doesn't allow AMI meters)

PI Architecture

- Utilize AF-SDK to build a heirarchical AF database
 - Structure format is Company, Substation, Feeder, Transformer, Customer
 - Allows for easing searching/navigating in the core PI client tools
- Program runs weekly and updates the hierarchical database with data in the flat database
- Since the customer information isn't perfect, we utilize a "No Data" hierarchy as a catch-all for customers that cannot be mapped to a particular substation/feeder

PI Data

- The data coming from the AMI meters is very different from normal EMS data
- Users in EMS environments typically query data with a specific purpose in mind
 - i.e. look at a trend for an overloaded facility, plot substation voltage, etc.
- The users in the CVR environment want to see customers that have experienced voltage excursions
 - This requires developing custom reports that query the entire PI system and output the results to some usable format

PI Data

- The voltage data received from the meters is not normalized and represents the actual delivered service voltage
 - This can make the reporting and querying difficult when finding excursions due to many scales
- PHI has custom built voltage exception report logic for each meter manufacturer/type
 - Even voltage values in the same meter type can be different nominal voltage depending on the service voltage

PI Data

- KWH data is received for each meter type
- Utilize custom code to roll up the KWH data for customers to transformer, roll up transformer KWH to feeder
- Collaborative effort with OSISoft to develop rollup code due to the process to input data into the PI System from our meter system
 - The data could come in late for noncommunicating meters
 - Our data comes into the PI system in bulk
 - Our code looks back several days to sum up the KWH and store the data into PI

- Data is different than normal EMS data
 - Requires the system to tell you to look at something
- Massive amount of data
 - Built the system for 1.4M meters with approx 9M PI tags
 - Collecting data for only a subset of the tags
 - Regular voltage (every hour or every two hours) and kwh (every hour or every 15 minutes) for the CVR impacted customers (approx 200k customers)
 - Periodically do full system scan for a one time instantaneous voltage read during peak conditions
- Custom daily reports
 - Developed voltage exception reports and transformer overload reports
 - Utilizing the AF SDK
 - Reports are uploaded to a Sharepoint server for users to access

USERS GROUP

- Voltage exception report will list the customers who have had voltage deviations outside a defined range
- Different meter types can have many different acceptable ranges due to the service voltage difference
- Look for several consecutive excursions to trigger inclusion to the report
 - Based on frequency of the meter voltage read

```
| Carlo | Begin | See |
```


Summary and Takeaways

- Very cumbersome in general when handling such large amounts of data
- Reporting out of the PI system requires utilization of the AF-SDK
- PI does a good job at storing the massive amount of data
- PI behaves very well with vertical scale as opposed to horizontal scale
- AMI data is very different from the EMS data
- Have found multiple distribution system problems that required immediate attention
- Overall, the system has proved useful and has allowed us to build our CVR program and ensure customer voltages are within tolerance

Questions?

Timothy Schwarz, PE

- trschwarz@pepco.com
- Lead Engineer
- Pepco Holdings, Inc.

