

Microgrids; what they are and the value they bring

Presented by Chuck Wells, OSIsoft, LLC

USERS GROUP

Outline:

- Definition of microgrids
- What types of applications
- Microgrid use cases
- Microgrid control issues
- Approached to microgrid control
- Current DOE and CEC Microgrid projects

Definition of microgrids

- Interconnected loads and DER sources
- Acts as a single controllable entity
- Provide high reliability to critical loads inside the microgrid
- Automatically connects and disconnects to/from the grid
- Can operate autonomously in island mode

Type of applications

- Hospitals
- Universities
- Small communities
- Military bases
- Commercial buildings
- Government buildings

Typical sizes

- Large
 - 40 MW University campus
- Medium
 - 10 MW small community with critical loads
- Small
 - 1 MW commercial building

Standards governing microgrid

- IEEE 1547.4
 - Interconnection specifications
 - Internal behavior of the microgrid
- IEEE 2030.7
 - Microgrid control system
 - Multi-level control system

Benefits from microgrids

- 20 percent reduction in carbon emissions
- 20 percent increase in efficiency of delivering power to critical services in the microgrid
- 98 percent reduction in power outages to critical facilities in the microgrid
- Reduce energy purchased from connected grid
- Sell ancillary services to grid
 - Fast regulation market (result of FERC Order 755)
 - Demand response
 - Curtailment
 - Spinning reserve
 - Black start
 - Voltage regulation

FERC Order 755

- Pay for Performance
- Why was this rule passed
 - Providers of ancillary services were unable to get paid a fair price for services offered
 - eg. Beacon Power (flywheels)

Fast regulation markets

- California ISO (Mileage Market)
- PJM
- MISO
- ERCOT

Size of Markets (storage)* [storage should be inside microgrids]

- 100 MW PJM (now)
- 1300 MW CAISO (required by 2020)
- 3000 MW ERCOT(required by 2020)
- 400 MW MISO (now)

- Great Plains Institute
- Steve Dahlke
- Nov 18, 2014

Example of PJM Regulation market

January 1, 2015

Comparison of Clearing Prices

Microgrid control issues

- IEEE standards
- Observations of dynamic behavior of microgrid

Microgrid control issues (IEEE 1547.4)

- Voltage stability
- Phase imbalance
- Small signal stability
- Fault current compensation
- Reconnection rules
 - Angle difference tolerances at reconnection

IEEE 2030.7 specifications

- Control of multiple DERs
- Control of the PCC
- Control of voltage and frequency in island mode
- Optimization of microgrid in island mode

Actual control issues

- Low inertia microgrids
 - Examples from UCSD (a large microgrid)
 - 42 MW peak
 - 30 MW internal CHP
 - 2 MW solar
 - 2.8 MW fuel cell
 - 2.5MW/5MWh battery
 - Three ~100 kW battery systems
 - 4 major internal substations and 17 12 kV feeders
 - 125 buildings

October 9, 2013

Oct. 9 UCSD microgrid event

Realization Algorithm

```
Fn = 0.094653 Hz, D = 0.450955, P = 3.208795%
Fn = 1.353568 Hz, D = 0.044507, P = 85.795740%
Fn = 1.461354 Hz, D = 0.026519, P = 10.995465%
```


₹UCSD

Mitigation of UCSD microgrid dynamics

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Effect of Control Algorithm:

- For comparison, control power plotted at same scale a disturbance in real power
- Disturbance almost +/- 2MW
- Control power only +/- 0.25MW for mitigation

Results scale with size of disturbance and increase of damping

36

JSIS meeting, Callafon & Wells

April 26, 2013

April 29, 2013

Swarms of Power Oscillations

Conclusions

- Large microgrids have low inertia
- Fast disturbance mitigation might be required
- Voltage and frequency control should have fast dynamic response
- Distributed controls are required

Approaches to control

- Three levels of control
 - Decoupled control of DERs
 - Decoupled control of P and Q for the Microgrid
 - Optimizing control for ancillary services

Decoupling principle

$$\bar{S} = \bar{V}_r I^*$$

$$P = \frac{V_r V_s}{Z} \cos(\delta - \theta) + \frac{V_r^2}{Z} \cos(\theta)$$
 (1)

$$Q = \frac{V_r V_s}{Z} \sin(\delta - \theta) + \frac{V_r^2}{Z} \sin(\theta), \qquad (2)$$

One approach to decoupled control

Microgrid control system

Projects underway

- DOE-IIT-Bronzeville, ComEd
- CEC-Borrego Springs, SDGE
- CEC-Chemehuevi Reservation, UCR
- CEC-RM Winery, UCD
- CEC-John Muir Hospital, ChargeBliss
- CEC-Inverter testing Lab, SunSpec/UCSD
- CEC-Orange/San Diego, UCR

Chuck Wells

- cwells@osisoft.com
- Industry principal
- OSIsoft, LLC

THANK YOU

USERS GROUP