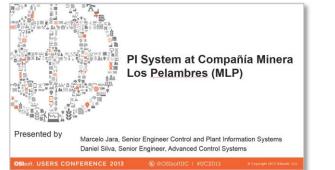


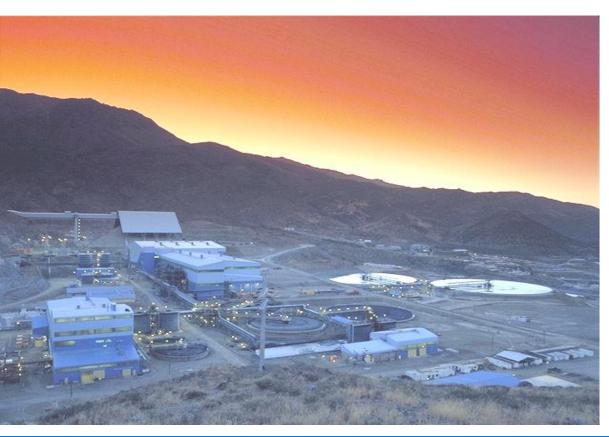
Innovation in Control System and Information, Cooper Mining


Experiences at Minera Los Pelambres, Chile

Presented by Carlos Collado, Minera Los Pelambres Luis Yacher, CONTAC Ingenieros

Introduction,from 2013 to 2015

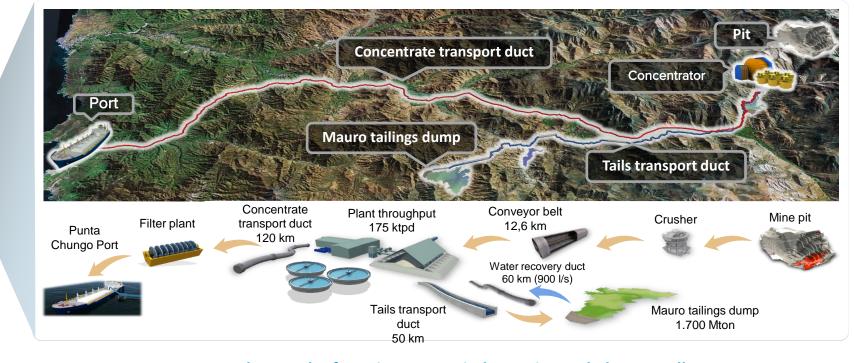
OSIsoft.


\checkmark Increased role of the PI System as a core business system

- Increased support of the value chain: Mine and commercial systems (product dispatch).
- ✓ System availability (HA and DR site)
- ✓ Base technology (virtualization)
- Enhanced User support procedures
- Enhanced system support procedures

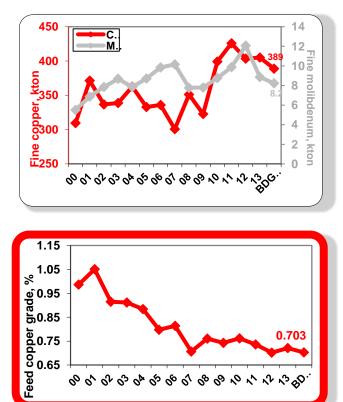
2

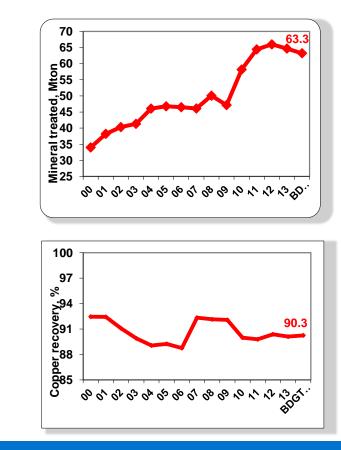
TABLE OF CONTENTS



Operational Intelligence

AMSA – Minera Los Pelambres (MLP) Drivers to Operational Excellence Operational Excellence Eco System The operational excellence challenge Decision-making GAP & OI Conclusions




Antofagasta Minerals - LOS PELAMBRES (MLP) @ glance

200 km north of Santiago - Coquimbo Region – El Choapa Valley Mine pit at 3.600 m.a.s.l. – Plant facilities at 1.600 m.a.s.l. Plant to Port distance: 120 km

SOME METALLURGICAL INDICATORS

.703

OPERATIONAL EXCELLENCE

The Challenges

- Improve Equipment performance & availability
- Improve Productivity
- Minimize safety & environmental risks
- Increasing complexity of technology
- Energy & Water efficient usage
- Acquire & retain knowledge
- Tighter regulatory laws

The MLP drivers

- Technology : the engine of productivity
- Link processes to core business
- Integration of process knowledge technology innovation
- ✓ Find new ways for relationships (collaborative development)
- Develop Advanced Process Control (APC) solutions
- Deliver in-time relevant statistics and KPI's to decision makers
- Secure process continuity and optimize production
- Leverage best practices and process knowledge

Operational Excellence Eco System

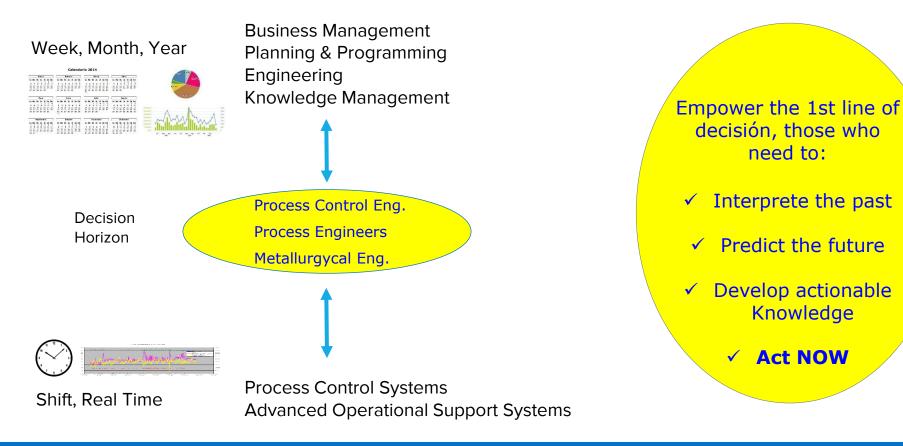
OSIsoft

Operators Plant Management Process Engineering Reliability and Maintenance Team

SCAPIE, Process Control Team

Technology Trainning Operational continuity Evolutionary development Standards & methodologies Best practices (extended) Team with key players Use available expert resources Develop strategic alliances Develop and maintain a knowledge network

> Operational Excellence Innovation Operational Improvement Sustainability



USERS CONFERENCE 2015

The operational intelligence challenge

The MLP actions towards the operational intelligence challenge, some examples

The goal: support and empower the "1st line" of decision

How to:

- Interprete the past
- Predict the future
- ✓ Generate actionable information

PI System, as a core technology
PI Data Archive, as the history repository

Analyze Find Structure Deploy

Cases and examples
SCAPIE Remote Site
P80 Model development
Process Analysis
Process evaluation (APC and control system performance)
Plant Model (Asset Framework)

SCAPIE Remote Site

- A "pilot" initiative
- Goal: move critical activities from the plant site

- ✓ DCS engineering and support
- ACS engineering and support
- ✓ PI-PIMS engineering and support
- Operational Intelligence support and development

An initiative to learn, test and develop:

- ✓ coordination and management procedures
- ✓ base technologies
- team building

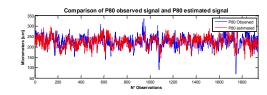
SCAPIE Engineering Remote Site

- ✓ PI System and DCS (control) teams working together at the same site
- ✓ Up and running since the last quarter of 2014
- \checkmark Services provided by the remote team has been not affected
- ✓ People learn very fast how to work remotely
- An excellent case for a precise evaluation of the multiple possibilities for remote operations management and consequently, its implementation, i.e.: remote control?, remote operations management?, remote process engineering?, remote reliability engineering?.
- Many components that have to be evaluated in its own merit since the time, investments and change management differs a lot.
- ✓ PI System as a key enabler,but starting from a reliable infrastructure and <u>trusted</u> data

P80 Model

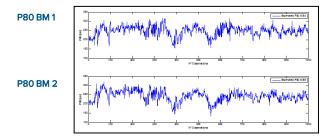
Overall Objective

To design and implement an online adaptive model


- ✓ capable of estimating the hydrocyclones overflow P80 coming from the ball mil at the output of each hydrocyclone battery for implementing ball milling APC strategies
- ✓ capable to incorporate real-time information of the process and to adapt model parameters.
- \checkmark combining empirical and phenomenological knowledge

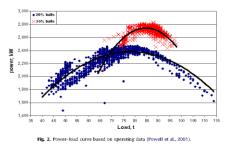
Role of the PI System

- ✓ source of the "experimental data", use of the history for the model development and testing.
- ✓ model running on PI ACE and Asset Framework (AF), future: move the model to the APC platform.



Use of multivariable process analysis tools to identify the most
 influencing factors for the model development.

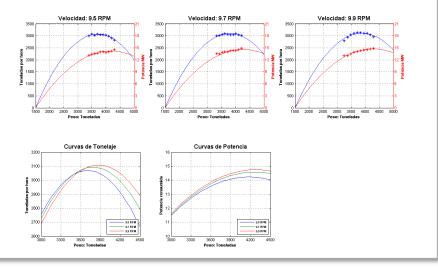
Excellent performance of the model as compared with the Lab Data


Oslsoft. USERS CONFERENCE 2015

Process Analysis, example case 1

Objective

Obtain Grindability (Powell) curves for a SAG Mill


Conventional methods: a time and cost consuming set of experiments

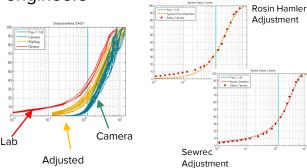
Role of the PI System

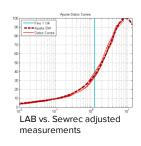
- ✓ Use the PI Server as the BIG DATA repository
- ✓ The PI System repository represents almost all the feasible operational conditions
- ✓ Reveal the knowledge that is embedded in the operational history

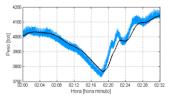
The results, using the history in PI

Some results

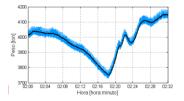
- ✓ (re) Tuning of the APC parameters, new operational points were founded with a much better energy consumption ratio.
- ✓ Implement an online SAG monitoring cockpit (future), by comparing the actual operational points with the expected ideal ones.
- ✓ Same, for the APC performance evaluation.


osisoft. USERS CONFERENCE 2015


Process Analysis, example case 2

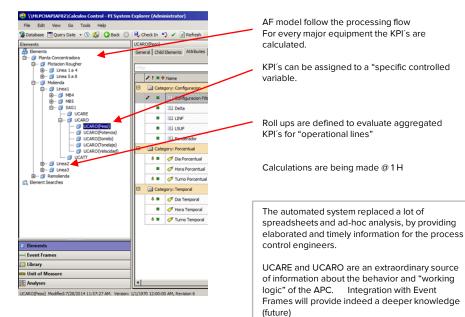

✓ PI System as a "daily tool" for the process analysis engineers

The problem 1	Difference between the ores size distribution as measured by the online analyzer (image analysis) and the lab results.
Find	Analysis of the historical data using different adjustment methodologies showed that SEWREC distribution showed a much better fit than the previously used Rosin-Ramler.
Deploy	Past measurements were adjusted, with the study results it was possible to correct previous balances and studies

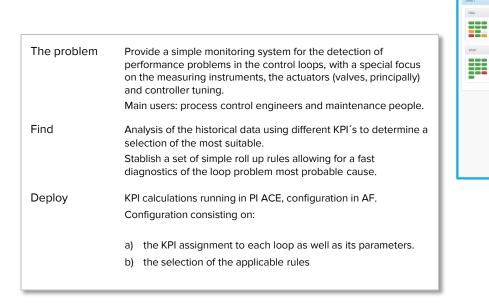

The problem 2	The signal from the SAG Mill load cell need to be filtered to eliminate noise that may affect the control.
Find	Analysis of the historical data showed that the existing filter added a delay of about <u>40</u> seconds. Several new filtering methodologies were investigated :moving averages, IIR, others, looking for a better compromise between Filtering and its inherent Delay.
Deploy	Filtering techniques are being tested, the selected one will be moved to the APC.
	Delay decrease in a critical signal will improve APC performance and its responsiveness.

Load Cell: original Signal and Filtered (existing filter)

Same, using different filtering techniques

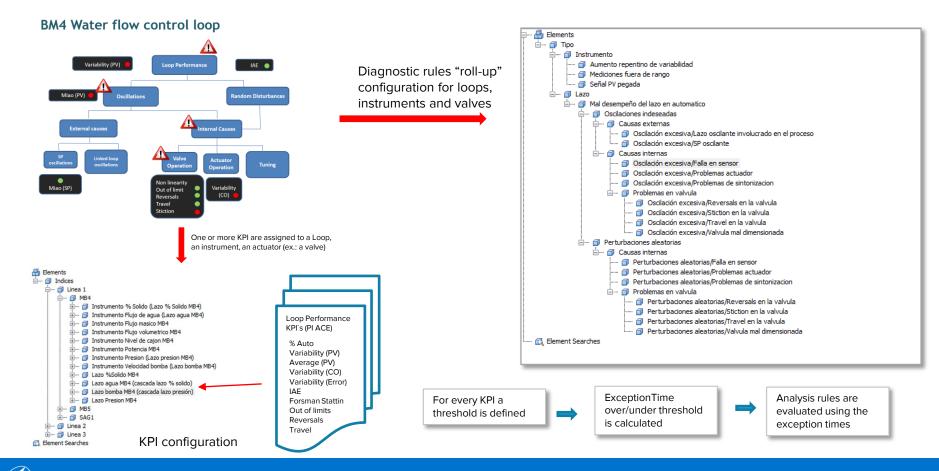

Process evaluation, example case

✓ PI System as a monitoring system for critical assets


The problem	APC and process control systems are a critical asset, its performance directly affect (and somehow determines) the performance of the operation.
	As any other asset, it is necessary to online evaluate its behavior and "health" towards the assurance of its availability, use and expected performance. Evaluation needs the processing of online and historical (BIG) data

Find	Several "test" methods were compared using historical data. Tests were compared with known problems and its operational behavior. A final set of tests and KPI were selected
Deploy	Using PI ACE (Test evaluation) and AF (Monitoring Model) two systems were implemented: 1. APC KPI's 2. Control loop evaluation

System 1: APC KPI's				
UCATT	Utilization time			
UCARE	Utilization time (considering equipment restrictions and op. state)			
UCARO	Utilization time (considering operational limits restrictions)			


Process evaluation, control loop performance evaluation

 □ M.P-MICControl × Q Control Webmails (mass) × ← → Q	Newselland			 ☆ ∎	Over	iou		
Minera Los Pelambres			a -	H- A- A-	Over	new		
Overview Alertas Otros								
Lines 1	ora 2		Lines 3					
MU4 MD5	MDG MD7		MDD	MUN				
3/0/1	5/45/2							
			5463				Detail summ	-
	MLP-KPIs Centrel		Contac Webmail = Envise *					
			9095/basico.aspx					
	Minera Los Pe	lambres					8* 8* 4*	4.
	Overview A	Jertas Otr	ros					- 1
	Alertas							
	Lazo	M84	FIC1301(SP)	Lazo agua MB4 (casc	ada lazo % solido)	-	Oscilación excesiva causada por Problemas del actuador#Revisar actuador del lazo	- 1
	Lazo	MB5	FIC1501(SP)	Lazo agua MB5 (casc	ada lazo % solido)	•	.Oscilación excesiva causada por Problemas del actuador#Revisar actuador del lazo	- 1
	Lazo	SAG1	BWSAG1WEIGHT(SP)	Lazo Peso		-	.Problemas de sintonizacion# Resintonizar liazo	- 1
	Instrumento	MB6	DIT2343	instrumento % Solido	(Lazo % Solido MB6)	-	Señal PV pegada#Reparar Instrumento de medicion	
	Instrumento	MB6	320HICPP103(PV)	Instrumento Velocidad bomba MB6)	1 bomba (Lazo	-	:Mediciones fuera de rango#Reparar instrumento de medicion	
	Lazo	MB6	320HICPP103(SP)	Lazo bomba MB6 (cas	scada lazo presión)	-	Falla en el instrumento de medición PV#Revisar instrumento de medición PV	
	Instrumento	MB7	FIT2542	Instrumento Flujo volu	metrico MB7	-	Mediciones fuera de rango#Reparar Instrumento de medicion	
	Lazo	M87	KS-DIT2543MAX	Lazo %Solido MB7		-	Perturbaciones aleatorias causadas por Problemas del actuador#Revisar actuador del lazo	
	Lazo	M87	FIC2501(SP)	Lazo agua MB7 (casc	ada lazo % solido)	-	:Oscilación excesiva pero variabilidad y error aceptables en el lazo:/variabilidad alta en el actuador#Revisar actuador	

Process evaluation, example case, Control Loop Evaluation (cont.)

OSIsoft. USERS CONFERENCE 2015

The core: reliable data, meaningful contexts

The problem	As the PI System evolved to a mission critical system, data quality, availability and uniqueness becomes also critical.
	Need for a close management of a selected set of data.
Find	A structured analysis of the available data, validation needs, aggregated calculations and KPI's.
	A methodology was used for the selection of the "core variables", as a validation criteria, the list was compared with all the actual reports, verifying if any value on these could be derived from the "core variables"
Deploy	Develop an AF model for the core variables.
	Establish dedicated procedures for the quality assurance of the "core data" as well as for the AF model.
	Re-engineer the actual reports and dashboards Almost an immediate value by the Coresight users.

Level 1

Related with the main function of the Line, Process, Major Eq.

Most of the times these variables have a "program"

Ex.: Thoughput, Inventories, MatBalance values.

Efficacy

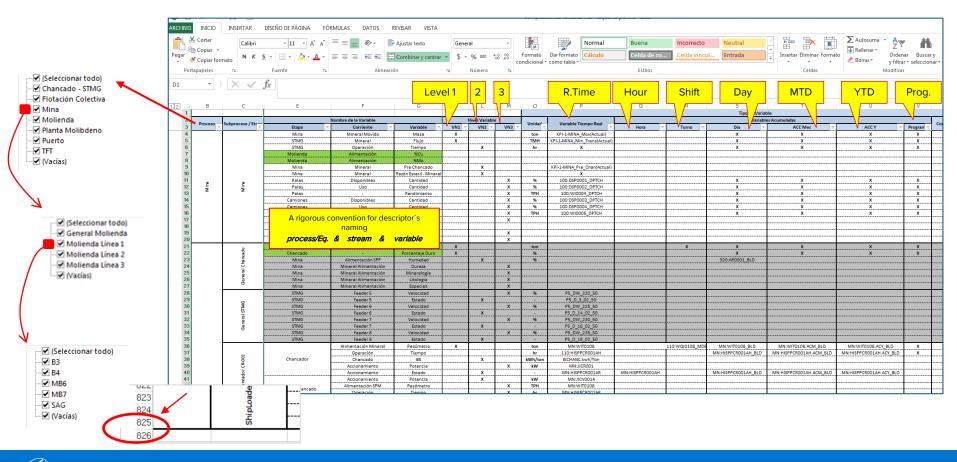
Level 2

How the function is being (was) done.

Most of the times these variables have a Target.

Ex.: Ratios, Comsumptions, Operational Adjustments,.

Level 3


Provides an insight about how the Main Function as well as the execution was done.

Most of the times these variables have limits.

Op. Control

Plant Model (core variables)

Future directions

- \checkmark Continue empowering the users in the "first line" of the operation decisions.
- ✓ Enhance and further development of dedicated OI applications:
 - Equipment performance
 - Energy
 - Reliability
 - Consumables
- \checkmark Operations portal
- ✓ Complete (PI System) coverage of the mine data
 - Consumables stocks
 - FMS (down times, eq. health, production data)
 - Log Book
 - SKF (condition monitoring)
 - CMMS
 - Shovels and Drillers eq. heal
- \checkmark Enhance and empower the remote site

Final remarks

- Ist. Line Operations Managers, engineers and analysts posses a challenge (and a huge opportunity) to add value.
- PI System as a core technology to support the daily work and added value applications for the 1st line.
- PI System as a core technology for implementing different organizational structures, not only a remote site but the support of the extended operational excellence eco system.

Acknowledgements:

Most of the material related with APC was provided by Daniel Silva, from Minera Los Pelambres, who leads the APC engineering team.

Carlos Collado, Minera Los Pelambres ccollado@pelambres.cl

Daniel Silva, Minera Los Pelambres dsilva@pelambres.cl

Luis Yacher, CONTAC Ingenieros lyacher@contac.cl

Questions

Please wait for the **microphone** before asking your questions

State your name & company

2

3

© Copyright 2015 OSIsoft, LLC