

Integrating Operations Technology (OT) and Information Technology (IT) with the PI System Infrastructure

Presented by Vijayendra Shenoy

Integrating Operations Technology (OT) and Information Technology (IT) with the PI System Infrastructure

April 29th

GMR Overview



Creating Tomorrow, Today

GMR Group was established in June 1978

1996

2014

- Gaining momentum
- 3 Airports
- 9 Highways*
- 8 Power Plants / 6 Projects
- 2 Coal Blocks
- 2 Power Transmission Projects

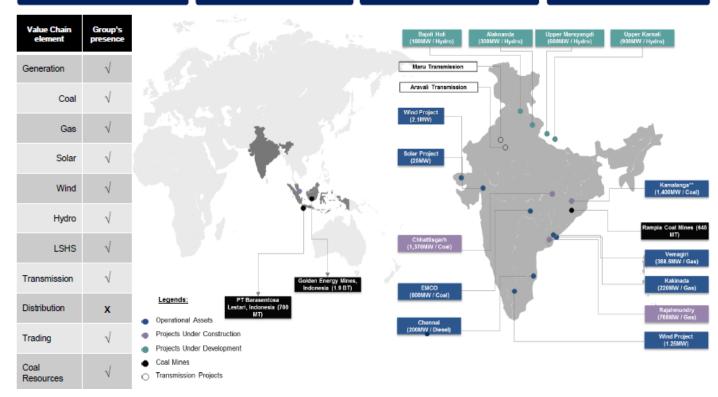
2018

Large & diversified infrastructure player

- 3 Airports
- 9 Highways*
- 2 Special Investment Regions
- 11 Power Plants / 3 Projects
- 2 Coal Blocks
- 2 Power Transmission assets

*include Minority stake in 2

Power Generation Capacity

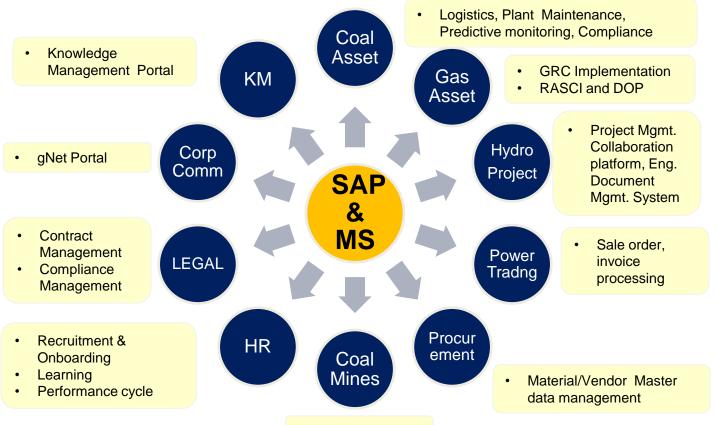


Balanced Fuel Mix
Portfolio of gas, coal & hydro
projects

Optimal Revenue Mix
Mix of merchant & PPA based
Revenues

Ensuring Fuel Security
Coal Mines in Indonesia & India

<u>Diversification in related</u> <u>areas</u> Transmission & Power trading


About GMR Fleet

Plant	Location	Capacity	Unit Size	OSIsoft PI System Automation
EMCO Energy Limited	Warora	600 MW	2* 300	Implemented
GMR Kamalanga Energy Limited	Kamalanga	1050 MW	3* 350	In Progress
GMR Chhattisgarh Energy Limited	Chhattisgarh	1370 MW	2* 685	In Progress
GMR Power Corporation Limited	Chennai	200 MW	4* 50	Implemented
GMR Energy Limited	Kakinada	240 MW	46.5*4+53.5	Implemented
GMR Vemagiri Power Generation Limited	Vemagiri	388 MW	155 * 1 + 233	Implemented
GMR Rajahmundry Energy Limited	Rajahmundry	768 MW	239* 6 + 144.2	Implemented

Snapshot of IT landscape...

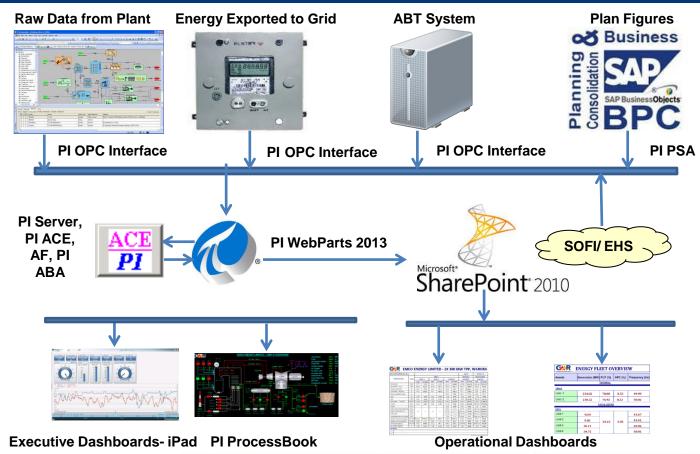
Mining solution

Business requirements

- Proposed Solution should leverage existing systems in use like SAP Material Management, Plant Maintenance, Business Planning and Microsoft SharePoint
- Solution should Integrate all KPIs and Metrics into a Single Report called Daily Plant Performance Report (DPPR) which is standardized across the Enterprise
- Report should have daily comparison of Plan vs Actual figures
- Plan Figures to be broken down from Annual Operating Plan (AOP) approved by Top Management at start of Financial Year
- Top-Most Management(CXO level) to have Real-time rolling displays of Top 4 KPIs (Generation, APC, Specific Coal Consumption and Heat Rate)

Key Requirements (Performance Monitoring)

- Proposed Solution should standardize all Major Equipment Calculations like
 - Boiler Efficiency
 - Turbine Efficiency
 - Air Preheater Performance
 - Condenser and Heater Performance
 - Cooling Tower Performance
- The solution must calculate Design value at current load condition based on curves provided by Boiler/Turbine OEM
- Solution must calculate deviation between Design and Actual and provide variance figures
- The calculations must be standardized into templates which can facilitate easy roll out to newer sites


Technological Challenges

- Disparate data sources isolated from each other
 - Annual Operating Plan data from SAP BPC
 - Energy Export data from Energy Meters
 - Coal Consumption and Process Parameters from DCS
- To avoid Manual entry as much as possible, report should get generated Automatically
- To Ensure data reliability so that calculation results are accurate and trustworthy

Architecture Diagram

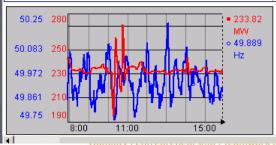
ENERGY FLEET OVERVIEW

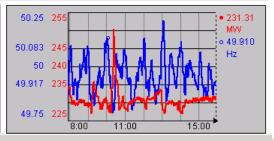
Assets	Generation (MW)	PLF (%)	APC (%)	Frequency (Hz)
		THERMAL		

EMCO

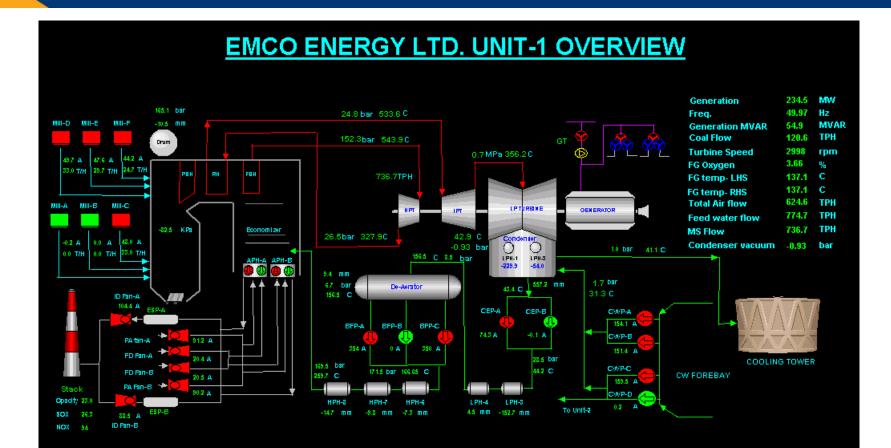
Unit -1	231.65	77.36	9.18	49.91
Unit -2	231.57	77.35	8.39	49.93

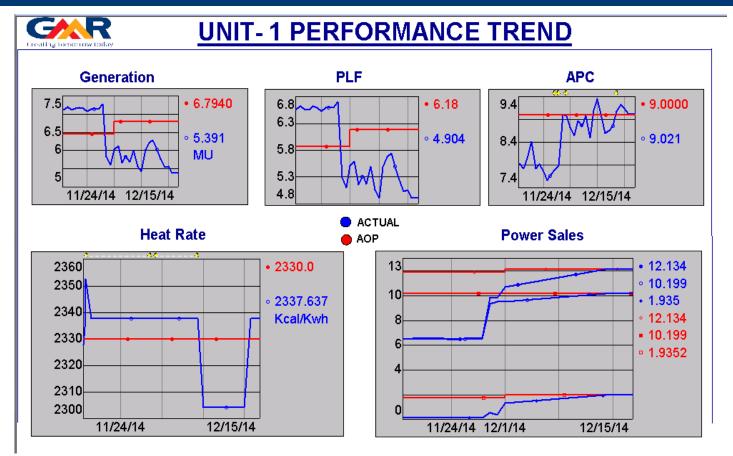
GAS & LIQUID

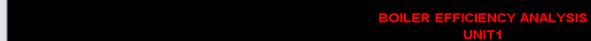

GPCL

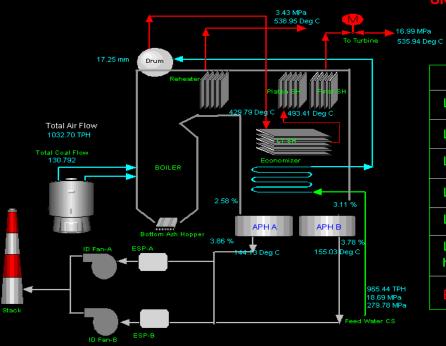

Unit-1	-0.04			43.67
Unit-2	0.02	28.74	5.95	43.41
Unit-3	-0.07	20.74	3.73	43.43
Unit-4	40.16			49.91

Plant Overview


EMCO HIGHLIGHTS Creating tomorrow today							
GENERATION PARAMETERS	UNIT-I	UNIT-2					
GENERATION(MU's)	5.61	5.56					
GENERATION(MW)	233.89	231.57					
HEAT RATE(Kcal/Kwh)	2337.64	2341.14					
SP. COAL CONSUMPTION(gm/kwh)	504.69	538.53					
APC (%)	8.90	8.18					
ENVIRONMENT PARAMETERS							
TPM (< 50)mg/Nm3	22.99	43.20					
SOX (< 46)mg/Nm3	18.25	23.74					
NOX (< 150)mg/Nm3	69.76	50.80					


Unit Overview





14

HP Heater

LP Heater

Condenser

Turbine

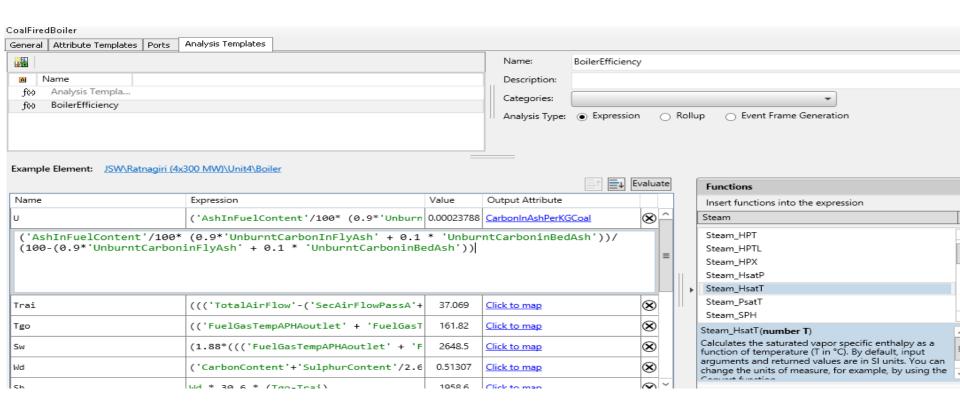
Boiler

BOILER LOSSES

Parameter	UOM	Design Val.	Actual Val.	Varience
Loss Due to Dry Flue Gas	%	4.23	4.71	-0.48
Loss Due to Moisture in Air	%	0.16	0.15	0.01
Loss Due to Hydrogen In Fuel	%	4.21	4.90	-0.69
Loss Due to Moisture in Fuel	%	1.10	2.25	-1.15
Loss Due to Unburnt Carbon	%	0.50	0.38	0.12
Loss Due to Sensible heat of bottom Ash	%	0.06	0.10	-0.04
Boiler Efficiency	%	88.81	86.92	1.89

Input Parameters

All Units


11-10-2014 16:24:06

Air Preheater

HOME

AF Template for Boiler Efficiency

Plant Performance Report

GMR EMCO ENERGY LIMITED - 2X 300 MW TPP, WARORA

Dreating temerrow today											
EMCO/IMS/DPPR/16/16.1							DATE		24-Apr-15		
		DAILY					MONTHLY		YEAR TO DATE		
PARTICULARS	иом	UNIT-1		UNIT-2		STATION		STATION		STATION	
		AOP	ACTUAL	AOP	ACTUAL	AOP	ACTUAL	AOP	ACTUAL	AOP	ACTUAL
Generation	Mu's	6.41	5.36	6.41	5.10	12.82	10.46	307.71	251.75	307.71	251.75
Generation - Avg	MW	267.1	223.3	267.1	212.6	534.2	435.9	534.2	437.1	534.2	437.1
Plant Load Factor	%	89.0	74.4	89.0	70.9	89.0	73.4	89.0	72.9	89.0	72.9
Availability - Machine	%	99.3	100.0	99.3	100.0	99.3	99.6	99.3	98.8	99.3	98.8
Plant Availability Factor	%	-	-	-		89.0	₽73.2	∜89.1	73.0	₽ 89.1	73.0
APC	%	8.50	9.41	8.50	9.44	8.50	9.49	8.50	9.40	8.50	9.40
APC	Mu's	0.54	0.50	0.54	0.48	1.09	0.99	26.16	23.67	26.16	23.67
Heat Rate - 19-Apr-2015	Kcal/KWh	2,330.0	2,342.0	2,330.0	2,338.9	2,330.0	2,340.4	2,330.0	2,223.7	2,330.0	2,223.7
Export	Mu's	5.87	4.85	5.87	4.62	11.73	9.47	281.56	228.08	281.56	228.08
Import	Mu's					0.00	0.00	0.00	0.04	0.00	0.04
Sales Plan(Schedule/Actual)	Mu's					9.54	9.47	ን 228.29	228.08	228.29	228.08
Sales-Total @ Bus bar	Mu's	-	1-		-	11.73	9.47	281.56	228.08	281.56	228.08
Sales-PPA	Mu's					10.30	9.47	247.10	226.45	247.10	226.45
Sales(Bilaterals+Exchange)	Mu's					1.41	0.00	33.75	1.63	33.75	1.63
Specific Coal Consumption	gm/KWh	585.4	549.5	585.4	620.8	585.4	584.2	585.4	632.0	585.4	632.0
Specific Oil Consumption	mL/KWh	0.50	0.00	0.50	0.01	0.50	0.03	0.50	0.29	0.50	0.29
DM Water MakeUp	cub m/day	730.1	55.3	730.1	96.3	1460.2	151.7	33584	5589	33584	5589
DM Water MakeUp	%	3.00	0.22	3.00	0.39	3.00	0.33	0.00	₽ 0.47	0.00	0.47

BI Dashboard



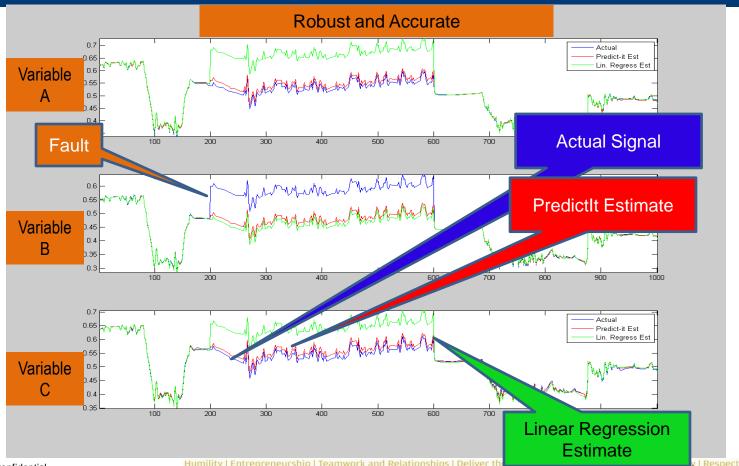
BI Dashboard

Mobility - On-the-fly Reporting

Mobility - On-the-fly Reporting

Next Step - Predictive Analytics using Predict-IT

- Monitoring Recent advances in modelling algorithms have made it possible to track trends in process variables on a continuous basis and compare them to the "standard" for the operation.
- <u>Detection</u> Its primary function is to receive measured readings from instruments and use an advanced pattern recognition engine to determine if the readings are valid.
- Analysis It is highly intuitive, and it's easy to use model developer allows for quick deployment of process models.


It's advanced pattern recognition engine uses the well-known nearest neighbour algorithm and is specifically adapted to the task of fault identification.

- <u>Prevention</u>- Predict-It provides the following.
 - Early warning/Fault detection
 - Advanced pattern recognition
 - Proactive plant management
 - Reduce unexpected outages; increase availability
 - OSIsoft PI System compatibility

Next Step - Predictive Analytics using Predict-IT

23

GMR Copyright © - Confidential

Humility | Entrepreneurship | Teamwork and Relationships | Deliver the Cont.

Conclusion

- Business Benefits
 - Proactive information on generation to Power Trading team
 - Coal sourcing decision making about consumption & inventory
 - PI is the Single source of Truth
- Operational Benefits
 - SMS and Email Notifications for early resolution of issues
 - Operational Dashboards to identify and resolve issues
 - Automated Operational Reporting at different levels
- Decision making
 - Business Intelligence and operational dash boards

Questions

Please wait for the microphone before asking your questions

State your name & company

IHANK Y()

