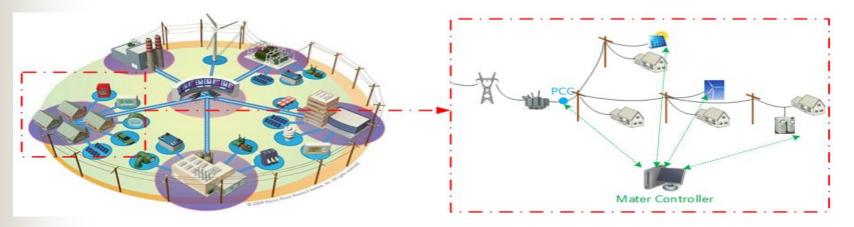


DOE/ComEd Microgrid Project at Illinois Institute of Technology

Mohammad Shahidehpour, Presented by Illinois Institute of Technology; Chuck Wells, OSIsoft, LLC


ILLINOIS INSTITUTE OF TECHNOLOGY

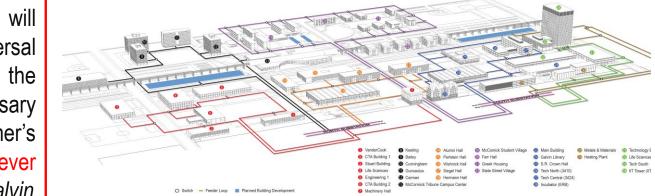
© Copyright 2015 OSIsoft, LLC

Building Block of Smart Grid: Microgrids

- Protect critical infrastructure from power losses in the event of physical or cyber disruptions to the bulk electric grid.
- Locally integrate renewables and other distributed generation sources and provide reliable power to customers.
- Ensure that critical operations can be sustained during prolonged utility power outages.
- Power grid will be the "grid of grids" in the future.

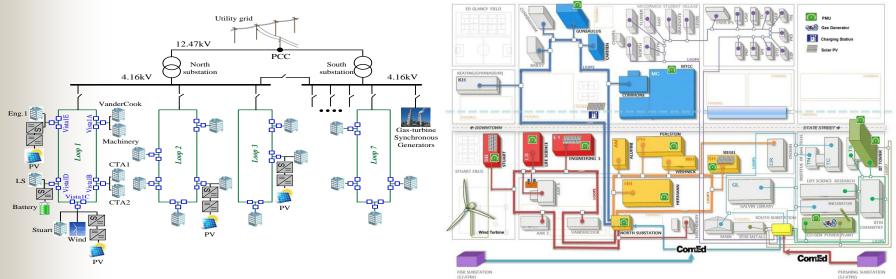
DOE Project Objectives

- Demonstrate higher reliability introduced by the microgrid system at IIT
- Demonstrate the economics of microgrid operations
 - Demonstrate value of ancillary services to the grid
- Allow for a decrease of fifty percent (50%) of grid electricity load via internally generated power
- Create a permanent twenty percent (20%) decrease in peak load from 2007 level
- Defer planned substation through load reduction
- Offer a distributed system design that can be replicated in urban communities.


Boundaries of IIT Microgrid

ILLINOIS INSTITUTE OF TECHNOLOGY

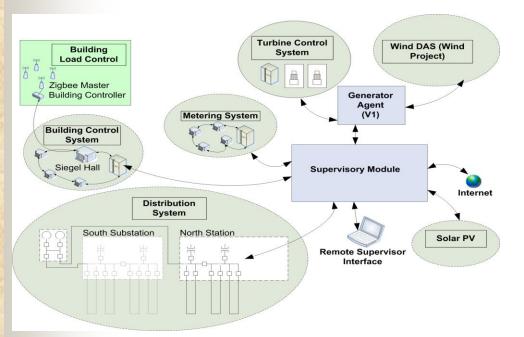
IIT Microgrid is located 2.5 miles south of downtown of Chicago and is bounded by major streets, highways, and railroads.


- Funded by the Department of Energy
- Located at IIT
- Involves the entire campus

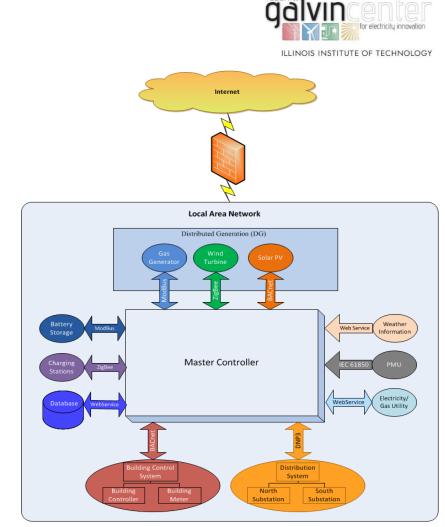
"The perfect power system will ensure absolute and universal availability of energy in the quantity and quality necessary to meet every consumer's needs. It is a system that never fails the consumer." Bob Galvin

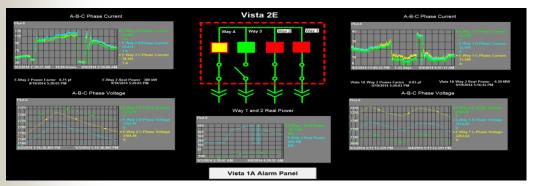
IIT Microgrid Overview

MICROGRID OF IIT CAMPUS



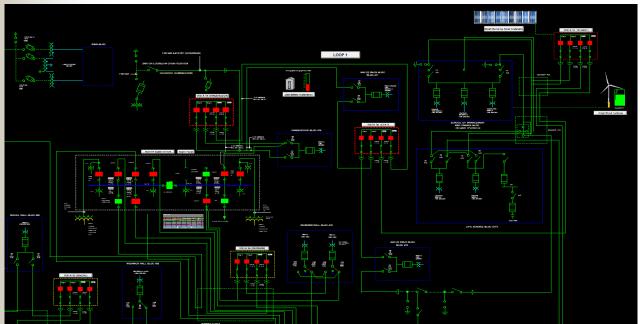
IIT Microgrid Control


• A firewall separates the subnet that includes master controller and all the devices from the outside internet.

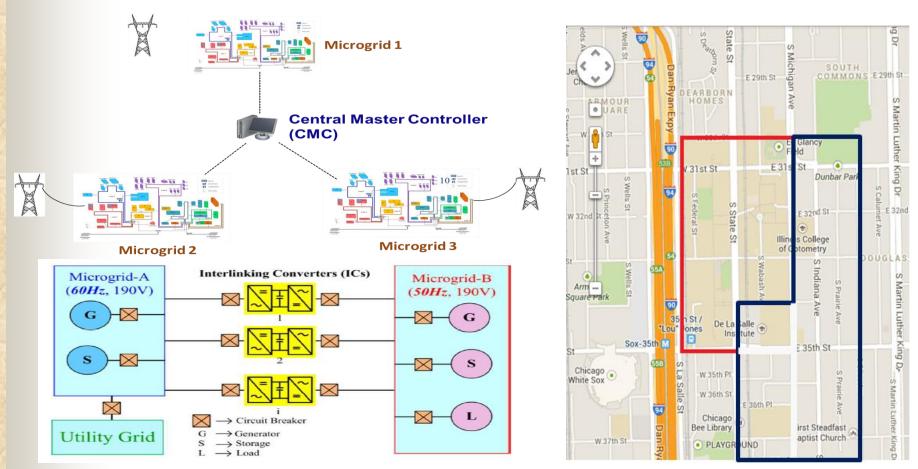


- Monitoring signals provided to the master controller indicate the status of DER and distribution components.
- Master controller signals provide set points for DER units and building controllers.
- Master controller communicates with microgrid field devices through protocols like Modbus, BACnet, DNP3, etc.
- Building controllers communicate with sub-building controllers through a Zigbee wireless control and monitoring system to achieve a device level rapid load management.

Microgrid Communication

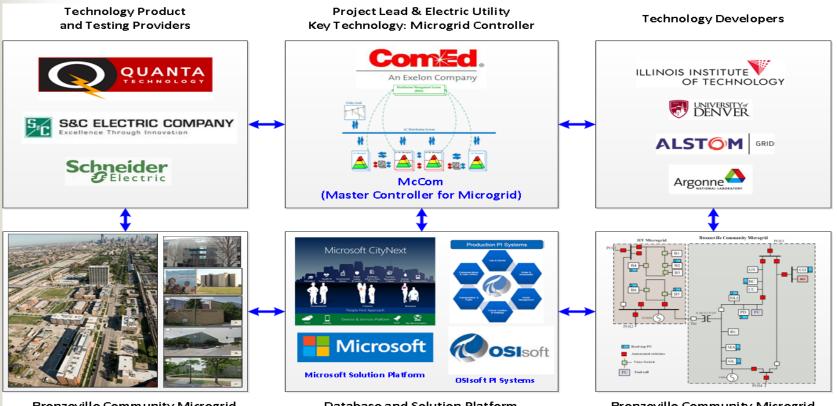

- Complex communication (i.e. multiple protocols) means more potential vulnerabilities and unintentional errors.
- Linking to the Internet may introduce common vulnerabilities..
- Wireless communication (e.g. Zigbee) may incur more potential vulnerabilities.
- More network nodes means more exploitable entry points and vectors.
- Extensive data gathering and two-way information flows may broaden potential for compromises of data confidentiality.

ILLINOIS INSTITUTE OF TECHNOLOGY


Cost of the IIT Microgrid

- Total project cost: \$13.6M
 - \$7.6M from DOE, \$6M Cost Share
 - \$9.5M Implementation, \$4.1M Research and Development
- Deferred Investment Cost at IIT Microgrid
 The IIT Microgrid project has deferred \$7,000,000.
- Reduction in total annual marginal CO2 emissions (%) =
 1 (49,078,224.44/52,536,042.84) = 6.58%
- The total annual saving at IIT Microgrid is \$1,171,878.60.

Community Microgrid



ILLINOIS INSTITUTE OF TECHNOLOGY

Community Microgrid at IIT

Bronzeville Community Microgrid (BCM Physical System) Database and Solution Platform Providers Bronzeville Community Microgrid (BCM Design Model)

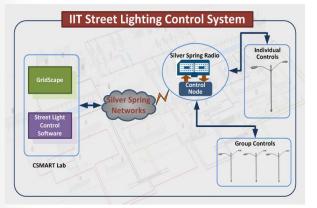
DC Microgrid at IIT

AC Sub-Grid

Hybrid Microgrid

Keating Hall of IIT Roof **PV** Array **PV** Array A Die K DC-DC DC-AC Inverter Controller DC Bus Storage DC-AC/AC-DC DC Load Battery Bidirectional Converter AC Load Utility Grid AC Bus AC Main **Opened during** Switchboard IIT Islanding Mode Microgrid Interlinking P_k, Q_k IC IC Converters $P_{a,x}, Q_{a,x}$ Localized AC Loads $V_{a,x}$ P_L, Q_L Zdi $P_{d,v}$ Localized Vdy DC Loads

Other


Loads

DC Sub-Grid

CSMART:

(Center for Smart-Grid Applications, Research, and Technology)

Project Objectives

- Demonstrate higher reliability introduced by the microgrid system at IIT
- Demonstrate the economics of microgrid operations
 - Demonstrate value of ancillary services to the grid
- Allow for a decrease of fifty percent (50%) of grid electricity load via internally generated power
- Create a permanent twenty percent (20%) decrease in peak load from 2007 level
- Defer planned substation through load reduction
- Offer a distributed system design that can be replicated in urban communities.

A commercial grade replicable microgrid system

- Key attributes:
 - Easy to configure
 - Easy to maintain
 - Integration with any network flow model
 - Easy for new users to understand
 - Able to control frequency and voltage in both connected and island mode
 - Seamlessly connect and disconnect from the grid
 - Able to control direction of power internally for Conservation Voltage Reduction
 - Able to sell ancillary services to the connected grid (fast regulation, curtailment, etc.)
 - Able to provide uninterruptable power to critical loads inside the microgrid

Why Standards and Standards-based Models?

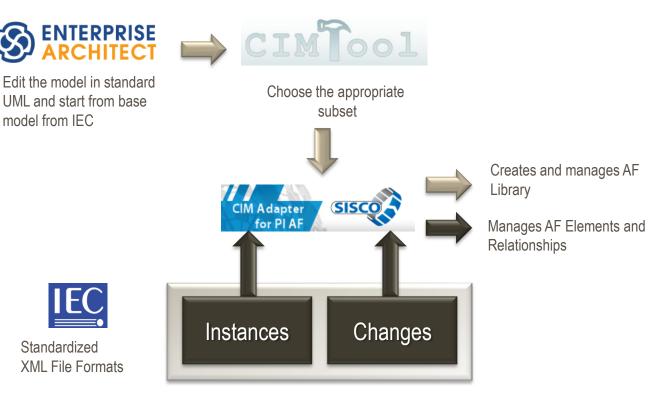
- Avoid "spaghetti" software between applications
 - Avoid multiple copies of same data in multiple formats from different vendors
 - Use a single copy of the data that is compatible with all applications

CIM and IEC 61850 are global standards that provide 90% of what is required for a microgrid information model

- Need a highly detailed model of the power system
- Standard file format
- A model that power system software vendors will adopt

CIM and IEC 61850 provide standard mechanisms for expansion, thereby allowing the microgrid solution to be developed and commercialized.

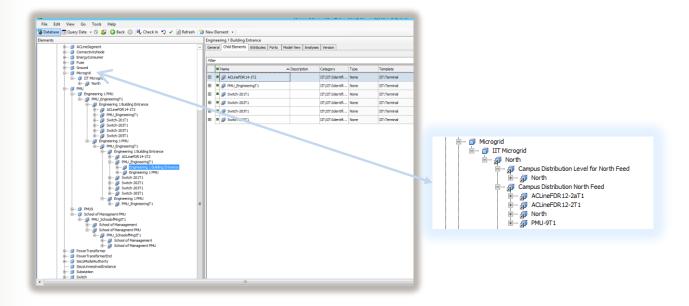
How does the IEC Modeling Process Work?



ILLINOIS INSTITUTE OF TECHNOLOGY

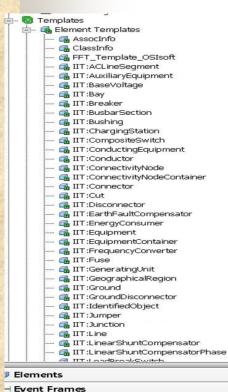
Recognized Process

- Model maintenance tooling chosen by IEC
- File formats are standard
- Creates documentation
 as model is maintained
- CIM Adapter translates model information into AF


OSIsoft, LLC Common Information Model

- Objectives:
 - Low cost method of configuring AF database
 - Efficient method to configure the network flow model
 - Ease of migration to other microgrids
 - Automatic tagname creation per IEC 61850 standard
 - Automatic tag configuration using OSIsoft 61850 "connector"
 - Easy to modify and maintain via CIM incremental updates
 - CIM messages to the network model
 - Interoperable with any network model accepting CIM XML
 - Share information with other microgrids and the area electric power system

Microgrid Extensions to IEC 61970 CIM standard

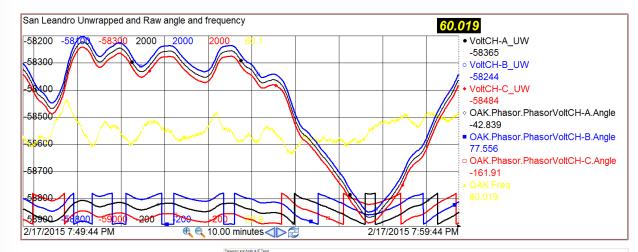

- Microgrid
- PMU
- AC lines with PMU
- Breakers/switches with PMU
- Transformers with PMU
- DERs (PV, Battery, EV charging with PMUs)
- CHP with PMU
- Caps and reactors with PMUs

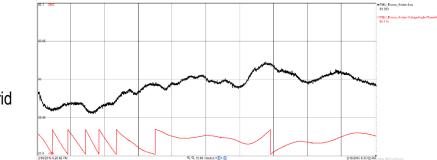
MicroGrid Specific AF Templates

MicroGrid data structure AF Templates

C the s

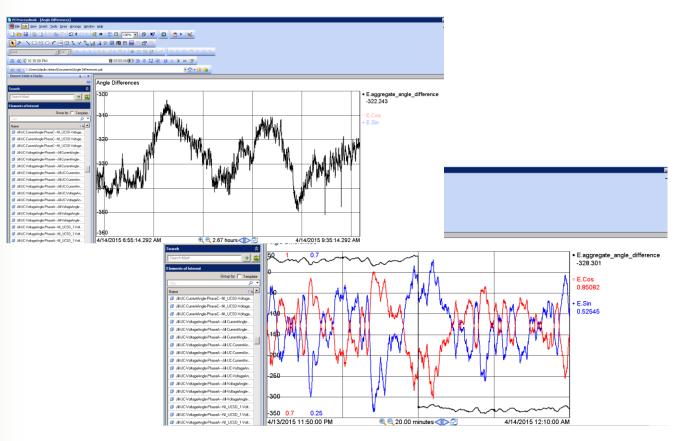
/ i 🗢	Name	 Description 	Default Value
	PMU.LPHD	DT:PMU_L	
	BMU.LPHD.DC.PhyNam.altitude	Per IEC 61	0
	BMU.LPHD.DC.PhyNam.latitude	Per IEC 61	0
	BMU.LPHD.DC.PhyNam.longitude	Per IEC 61	0
	BMU.LPHD.DC.PhyNam.model	Type of EV	
	BMU.LPHD.DC.PhyNam.mrid	Master reso	
	BMU.LPHD.DC.PhyNam.vendor	Name of th	
	B PMU.MMXU1	DT:MMXU	
	BMU.MMXU1.DC.NamPltconfRev	Configurati	0
	✓▲ PMU.MMXU1.MX.AphsB.instCVal.ang.f	Phase B a	0
	A PMU.MMXU1.MX.A_phsA.instCVal.mag.f	Phase A a	0
	✓▲ PMU.MMXU1.MX.A_phsC.instCVal.mag.f	Phase A a	0
	✓▲ PMU.MMXU1.MX.ROCOF.mag.f	Per IEC 61	0
	BMU.MMXU1.MX.TotPF.cVal.mag.f	From IEC 6	0
	BMU.MMXU1.MX.TotW.cVal.mag.f	From IEC 6	0
	MU.MMXU1.MX_A.phsA.instCVal.ang.f	Phase A a	0
	MU.MMXU1.MX_A.phsA.instCVal.mag.f	Phase A a	0
	MU.MMXU1.MX_A.phsB.instCVal.ang.f	Phase B a	0
	Apple: MMXU1.MX_A.phsB.instCVal.mag.f	Phase B a	0
	MU.MMXU1.MX_A.phsC.instCVal.ang.f	Phase C a	0
	MU.MMXU1.MX_Hz.instMag.f	Frequency	0
	G PMU.MMXU1.MX_PhV.phsA.instCVal.ang.f	Phase A Vol	0

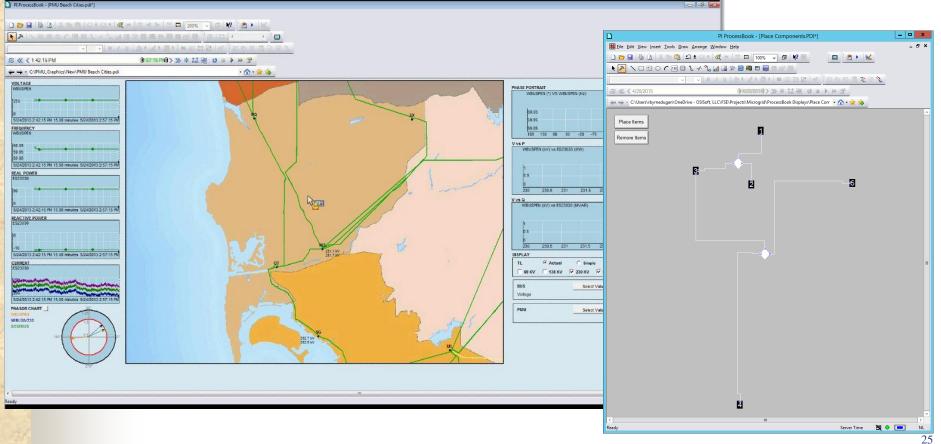

Added AF Templates


- Unwrapped angle
- Angle differences
- Event detection
- Grid Failure detection

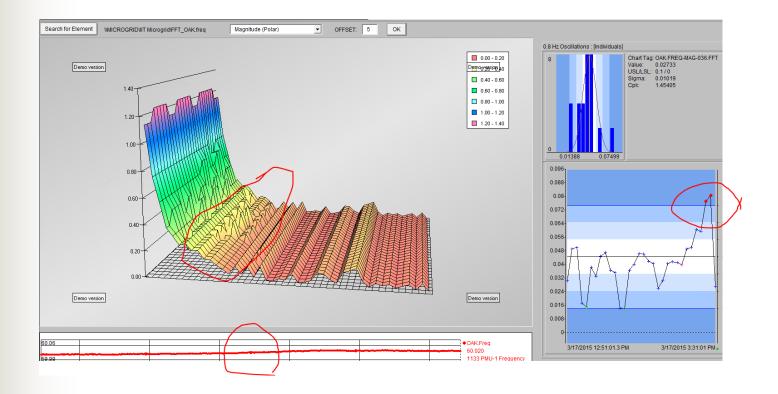
FFT

System model identification (Realization)

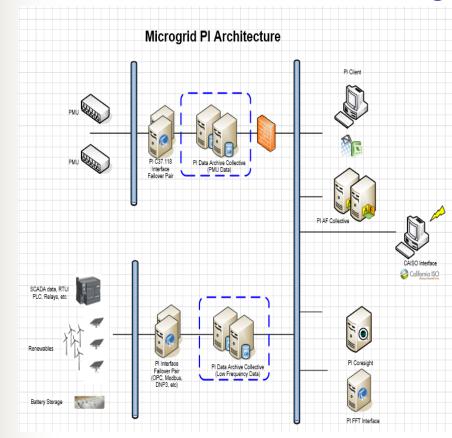

Example of Unwrapping Angles



Angles at IIT Microgrid


Angle differences, using Element Relative displays

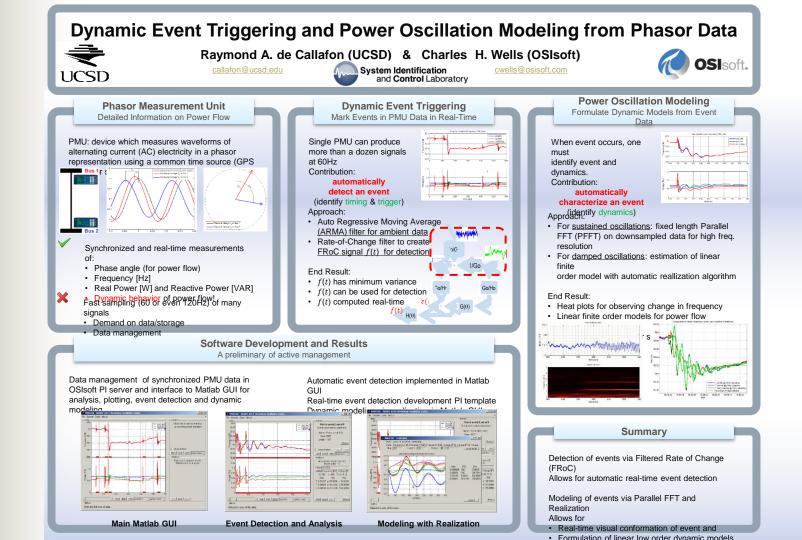
PI ProcessBook automatic GIS display from AF


Example Waterfall chart for the FFT

Cyber Secure Synchrophasor Platform (CSSP)

- HA running on two SEL 3355 substation hardened servers
- Hot failover interfaces (IEC 61850, C37.118, Modbus, DNP3, OPC)
- PI FFT for grid failure detection
- Configuration tested at Idaho National Laboratory

CSSP Architecture for Microgrids


PI System Products	Description		
PI Data Archive 1 (PMU)	PI Collective for storing High Frequency Data		
PI Data Archive 2 (Low Frequency)	PI Collective for storing Low Frequency Data		
PI AF Server	PI Asset Framework (AF) Collective for data organization. Includes configurable analytics and PI Event Frames		
PI C37.118 Interface	Collection node of Phasor Measurement Units Data (C37.118 Protocol)		
PI Interfaces (Other)	Collection nodes for low frequency data (DNP3, Modbus, OPC, meters, renewables, etc).		
PI FFT	PI Fast Fourier Transform (FFT) allows for calculation of real time FFTs		
PI Coresight Server	iPad and web-based tool to perform ad hoc analysis on PI System Data		
PI Clients	PI Processbook (dynamic interarctive process displays), PI Datalink (create reports and detailed calculations with PI System data in Excel), PI Coresight (perform ad hoc analysis)		
Notes:			
Operating Systems	Machines may be physical or virtual. Please consult the Virtualization and The PI System White Paper		
CAISO Interface	Communication node to CAISO. A few PI technologies may be used fo data transfer, namely: PI Cloud Connect, PI to PI, direct PI connection, among others		

SEL 3355 Substation hardened PCs – Microgrid Controller

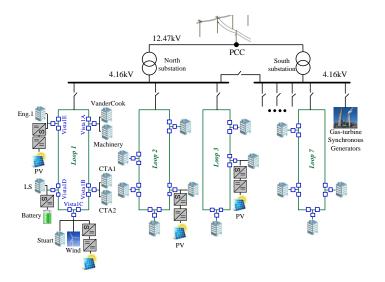
Operating System: Microsoft Windows Server 2012 R2 I (64-bit) Chassis and Mounting: **3U Horizontal Rack-Mount** Processor: Intel i7-3612QE Quad Core 2.1 GHz **Temperature Range:** -40° to $+60^{\circ}$ C **Expansion Slots:** 5 Slots: 1 PCI, 2 PCIe-x1, 2 PCIe-x4 **Power Supply A:** High Voltage: 125/250 Vdc or 120/240 Vac **Power Supply B:** High Voltage: 125/250 Vdc or 120/240 Vac RAM Slot 1: 8 GB DDR3 1333 MHz ECC Mini-UDIMM RAM Slot 2: 8 GB DDR3 1333 MHz ECC Mini-UDIMM SSD Slot 1: 120 GB Industrial-Grade SLC SSD SSD Slot 2: 120 GB Industrial-Grade SLC SSD

List price = \$8085

Commercial microgrid Summary

The US Department of Energy selected ComED/IIT/OSIsoft to demonstrate commercial grade microgrid controllers in a highly competitive bidding process.

Business Challenges


- A. Provide uninterruptable power to critical loads
- B. Rapid restoration after storms or disasters
- c. Lower carbon emissions

Solution(s)

A. Build a standards based solution

An Exelon Company

- B. Implement in AF
- C. Application of advanced decoupled control with PMUs as measurement devices

Results and Benefits

- Income from sales of ancillary services
- Income from carbon credits
- Allows Utility to integrate more renewable
- Lower cost of distribution inside grid

Argonne Labs, University of Denver, S&C, AlstomGrid, and Schneider Electric are also involved

Mohammad Shahidehpour

ms@iit.edu

Principal Investigator ComEd/IIT

Chuck Wells

cwells@osisoft.com

Industry Principal OSIsoft, LLC

Questions

Please wait for the **microphone** before asking your questions

State your name & company

© Copyright 2015 OSIsoft, LLC