

Achieving Enterprise-Wide Operational Intelligence Using the PI Server's Asset Framework (AF)

Presented by:

Stephen Reynolds

SunCoke Energy

- SunCoke Energy
- Our Vision
- Yield and Business Intelligence
- Oven Performance
- Asset Maintenance
- Next Steps

Agenda

SunCoke Energy

Our coke-making operations are strategically located in proximity to our customers' integrated steel-making facilities.

Coking and Heat Recovery

- Metallurgical coal mined and supplied to ovens
- Coal charged / coke pushed from ovens on 48 hr cycles
- Coke process operates at >2000 deg F (MACT)
- Flue gas processed in Heat Recovery Steam Generators (HRSG)
- High pressure steam supplied to customers or used to drive turbine generators
- Coke acts as a reducing agent in the smelting process while providing heat and structural support to the blast furnace reaction

PI System Overview

- Roughly 400,000 total tags with nearly all site tags passing through a PI to PI Interface into the central server
- Manual tags outnumber instrument tags over 4-to-1
- Smallest plant has only 1037 instrumented tags with over 17,000 manual tags
- Oven inspections drive manual entry

Plant 4

Our Vision

Equipment Performance Data

- Site Instrumentation
- Equipment Based Analytics

Unit Performance Data

- Unit Operations Data
- Unit Specific Analytics

Site Performance Data

- Site Operational Intelligence
- Site Level Analytics

Site Dashboards

- •Site Specific Summaries
- Site Roll-up Analytics
- •Internal Site Comparisons

Enterprise Dashboards

- Summary Business Intelligence
- Broad Analytics
- Site Comparisons

So What?

EBITDA is our primary performance measure at the corporate level

However, the plant focuses on:

- HES Performance
- Production
- Yield
- O&M Costs

Business Intelligence goes to the sources of these metrics

- The PI System provides the operational data at the source
- Accurate and granular data improves performance troubleshooting
- Timely reporting and visual analyses enable timely course corrections
- Standardized analytics enable performance benchmarking
- Structured monitoring sustains implemented solutions

Yield and Business Intelligence

- Improving yield by just 1% across the domestic fleet adds \$17 MM EBITDA annually
- And you can't spell EBITDA without "BI"...

Challenge

- No standard methods and measures
- No clear path to analysis
- Analysis paralysis

Solution

- Agree to and standardize definitions
- Corral manual inputs into Asset Framework
- Present in BI

Benefits

- Average fleet yield loss down 1% from 2012 to 2014
- Targeting additional 1% 2015

Year-on-Year Yield Loss Improvement

- Note wide spread of reported losses in early trends of 2012
- Agreement on measures tightened consistency in 2013

- Ability to troubleshoot hastened recovery after 2014 "polar vortex"
- Enhanced PI System / BI driving continuous improvement in 2015

Designing for Business Intelligence

Problem Statement:

- Prepare Business Intelligence platform to consolidate plant metrics calculations
- Not all data is metered, routinely measured, or regularly recorded
- Manually entered data must satisfy design standards for data architecture
- Granularity of data is used for broad time analyses (weekly, monthly, yearly...)

Solution:

- Utilize PI Manual Logger and Excel interface to input data
- Structure data through AF
- Prepare data for data model

Design:

- Build separate BI Hierarchy in protected AF database
- Structure data and context to simplify E-T-L process
 - Use categorization to improve query processing
 - Prepare data using analytics
 - Use templates for scalability and standardization
- Manual entry requires three attributes sharing common timestamp
 - Actual value
 - Entry timestamp
 - User ID

BI Hierarchy

Manual entry provides daily values, categorization provides quick reference to database key

Attributes for manual entry allow for robust E-T-L process

: m 4	Name	△ Value	Data R
20	Actual	1.2491921186447144	PI Poin
00	Hourly Average	1.010278582572937	PI Poin
20	Hourly Maximum	1.1567003726959229	PI Poin
33	Hourly Minimum	0.86165398359298706	PI Point
100	Thourly Production	0.29504638910293579	PI Point

Metered PI Tags provide range of values necessary for calculations

Oven Performance

To sustain high yield, the ovens must perform. Leading indicators for yield and oven performance are:

- Coking Rate
- Charge Weight
- Oven Temperatures
- Cycle Time

Challenge

- Tracking metrics extremely labor intensive
- Used day-to-day, but largely ignored in big picture analysis

Solution

- Identify available sources
- Utilize Asset Analytics to perform calculations
- Utilize SQC charts in PI ProcessBook to monitor and engage.

Benefits

SQC Plot - 1 : [X - Bar]

- Simplified engineering tasks
- Standard monitoring
- Early warnings
- Sustained solutions

BATTERY A OVEN 42 - TEMPERATURE - CROWN

Oven Performance

Charge Weight Improvement:

Improving charge weights to permit limits at three domestic sites nets up to \$9 MM in **EBITDA**

47 46

43

Schedule is key

Plant 1 Charge Weight Improvement (2014 and Forward Trend)

Jul-13

- Requires consistent temperatures
- An improvement in cycle time by 2 hours results in average of 7 more pushes per oven annually
- Roughly \$70K in production recovery per oven

True Operational Intelligence

Define the Analytics:

- Coking Rate is f(Coking Time and Charge Weight)
- Coking Time is f(Coked Out Time and Oven Charged)
- Coked Out Time is f(Temperatures and Cycle Time)
- Cycle Time is f(Oven Charged)

Uses the same PE functionality:

- FindEq (GE,GT,LE,LT,NE)
- TimeEq (GE,GT,LE,LT,NE)
- TagVal
- PrevVal
- IF-THEN-ELSE
- Etc...

Name	Expression	Value	Output Attribute
PrCharge	PrevVal('Indicator - Oven Charged','*')		Click to map
ElTime	TagVal('Charge Elapsed Time','*') <1 and TagVal('Charge Elapsed Time','*') <tagval('charge elapsed="" td="" tim<=""><td></td><td>Click to map</td></tagval('charge>		Click to map
PrCheck	TimeEq('Indicator - Oven Charged','*-8h','*-1m',1)=0		Click to map
ChargedPt	If PrCheck and ElTime and PrCharge<>1 then 1 else (if PrCharge=1 then 0 else NoOutput())		Indicator - Oven Charged

Name	Expression	Value	Output Attril
PrevCharge	FindEq('Indicator - Oven Charged','*','*-60d',1)	3/26/2015 5:08:00 AM	Click to map
PriorCharge	FindEq('Indicator - Oven Charged',FindEq('Indicator - Oven Charged','*','*-60d',1)-120,'*-120d',1)	3/24/2015 3:23:00 AM	Click to map
CyTime	Float(PrevCharge-PriorCharge)/3600	49.75	Previous Cha

Oven Charged marks the coking cycle and the next analysis calculates the Cycle Time

Asset Management

An oven in poor condition will not perform. Returning an oven to performance levels can cost upwards of \$250k in maintenance costs alone. Not to mention the cost of lost production...

Challenge

- >1000 ovens in fleet
- >130 inspection points per oven
- Paper system
- Two inspectors fleet wide

Solution

- Utilize PI Manual Logger to capture inspection data
- Add context through AF
- Visualize through PI Coresight and PI ProcessBook.

Benefits

- Easy visualization of results
- Pairing with performance data to optimize repairs
- Tailored repair strategy

Using Asset Framework

5.80

0.920

2.38

2.201

- Moving inspections to Oven Templates in AF
- Utilizing roll-up functionality within Asset Analytics to prioritize sites, batteries, specific ovens.
- Combining inspection data with performance data for health index calculation and analysis

Next Steps

Move into "Energy"

- Boiler Analytics
- Power Production

Compliance

- Environmental Monitoring
- Safety Tasks

Central Monitoring

- Standard Displays
- Summary Dashboards

Finish What We've Started!

Adding Value through Operational Intelligence

PI Server's AF powers SunCoke's Operational Integrated Solution Intelligence 2015: Operations BI roll-out Asset Analytics 2014: introduced Operations BI Operations BI pilot PI Central Monitoring Oven Health Index kickoff developed Further analytics 2013: Oven analytics development established (XLS) Oven inspections **Asset Evaluation** developed HRSG boiler equations Standardization of metrics developed (PE) begins SunCoke signs EA Providing Data Infrastructure agreement First AF structure built Pl Coresight introduced User community 2009-2011: blooms Metrics as a social exercise Continuous Laying the Foundation and Finding a Vision Improvement initiated Pl DataLink becomes "king" Limited user base

- Recruit a willing internal business partner
- Find common ground
- Structure the data
- Build the analytics
- Get help
- Deploy
- Enjoy!

Closing Points

Stephen Reynolds

swreynolds@suncoke.com

Solution Architect

Manager – Continuous Improvement

SunCoke Energy

Please wait for the microphone before asking your questions

State your name & company

감사합니다

谢谢

Danke

Gracias

Merci

Thank You

ありがとう

Спасибо

Obrigado

