



# Maximize the Value of Each Existing Utility Meter

Presented by David Phillips and David Trombly, UC Davis Utilities

### Campus (Main Campus)

- 34k students, 23k Faculty & Staff
- 1,000 ± buildings, 180 over 10,000 SF
  - 11.3M SF total, 5,300 acres land
  - Founded 1905, avg building age: 41 years old
  - Steam production: 700M lbs/yr (NG boilers)
  - Chilled water production: 30M ton-h/yr (elect chillers)
  - Purchased utilities cost (elect & gas): \$30M/year

## Better utilizing data from a single electricity meter

"Developing a clear data picture from existing meters might be more valuable than installing a thousand new ones. The proliferation of new sensors should not outpace our efforts to take action using existing data streams."



### **UCDAVIS**

#### **Business Challenges**

- A. Inform occupants of building device status in real time
- B. Generate alarms for assets.
- C. Assess device utilization to inform building standards development
- D. Optimize runtime of building devices

#### Solution

- A. Increase frequency of data collection
- B. Develop detailed equipment inventory
- C. Train and build real time analytics using machine learning

#### Results and Benefits

- "Easy" fixes by inspection
- Proof of concept app that integrates siloed car charger data

# The study area includes a 3-level parking structure and adjacent parking lots



## Like many sites, a single electrical meter monitors the whole district



### Many electrical loads on the same meter: lights



# Many electrical loads on the same meter: pumps & an elevator





# Many electrical loads on the same meter: ticket machines & chargers





#### **Business Challenges**

- Inform occupants of building device status in real time
- Generate alarms for assets
- Assess device utilization to inform building standards development
- Optimize runtime of building devices



# Historically, power use has been stored as typical 15-minute interval data



# Increased frequency of data collection brings out unique device signatures



# Increased frequency of data collection brings out unique device signatures





# Increased frequency of data collection brings out unique device signatures



### Status obvious at a glance: Storm pumps running when it's raining



#### Problems also obvious:

### Pumps still running a week later



# All loads entered into a database to support disaggregation

| Load    |                 |                                               |            |       | Fed from | Breaker    |       |                                 |
|---------|-----------------|-----------------------------------------------|------------|-------|----------|------------|-------|---------------------------------|
| Numbe - | Load Type       | <b>→</b> Description                          | ▼ High W ▼ | Low W | Panel 🚽  | No.        | Leg ▼ | Load Pattern                    |
| 1       | Elevator        | 3-Phase Elevator                              | 11 kVa     |       | EH       | 32, 34, 36 | ABC   | Periodic based on occupancy     |
| 2       | Pumps           | 3-Phase Storm Drainage Pump 2x10HP            | 7.7 kVa    |       | EH       | 26, 28, 30 | ABC   | Periodic based on rainfall      |
| 3       | Pumps           | 3-Phase Sewage Ejector 2x1.5HP                | 1.4 kVa    |       | EH       | 25, 27, 29 | ABC   | Periodic based on water use     |
| 4       | Charger         | 3-Phase Quick Charger Under Solar Canopy      |            |       | EH       | 20, 22, 24 | ABC   | Periodic based on demand        |
| 5       | Cooling         | 2-Pole Cooling Unit, CU-1 in Elev. Rm.        |            |       | L2       | 14,16      | ABC   | Periodic based on temperature   |
| 6       | Heating         | 2-Pole Water Heater 4,500W                    |            |       | L2       | 18,20      | CA    | Periodic based on water use     |
| 7       | Heating/Cooling | 2-Pole Heat Pump (Ext)                        |            |       | L2       | 22, 24     | ВС    | Periodic based on temperature   |
| 8       | Heating/Cooling | 2-Pole Heat Pump (Int) in Office              |            |       | L2       | 13, 15     | ABC   | Periodic based on temperature   |
| 15      | Electronics     | Irrigation Controller                         |            |       | L2       | 26         | Α     | Always on                       |
| 16      | Fans            | Fans in Bathroom, Jan., & Office, EF-1, EF-5, | SF-1       |       | L2       | 27         | В     | Periodic based on occupancy     |
| 17      | Heating         | Generator Heater                              |            |       | L2       | 28         | В     | Periodic based on temperature   |
| 18      | Pumps           | MH ABCD Sump Pump                             |            |       | L2       | 30         | С     | Periodic based on rainfall      |
| 23      | Refrigerator    | Refridgerator                                 |            |       | L1       | 18         | С     | Periodic based on temperature   |
| 24      | Lighting        | Traffic Lights                                | 0.2 KvA    |       | L1       | 1          | Α     | Always on                       |
| 28      | Lighting        | South Entry Parking Structure Ground-level    | 115        | 55    | EH       | 1          | Α     | Always on - Hi/Lo               |
| 31      | Lighting        | South Entry Parking Structure 2nd-level       | 115        | 55    | EH       | 17         | С     | Always on - Hi/Lo               |
| 35      | Lighting        | South Entry Parking Structure Stairs          | 70         | 70    | EH       | 10         | В     | Dusk-30m to Dawn+30m - Constant |
| 62      | Lighting        | Parking Lot 1                                 | 75         | 38    | H2       | 1          | Α     | Dusk-30m to Dawn+30m - Hi/Lo    |
| 63      | Lighting        | Parking Lot 1 Under PV Canopy                 | 75         | 38    | H2       | 1          | Α     | Dusk-30m to Dawn+30m - Hi/Lo    |



### Machine learning: model training







### EV charger status in Asset Framework (AF)



### Asset Analytics on EV charger status



#### Coresight app: number of chargers available





#### **Extensions**

- Deploy car charger app across campus and publicize
- Automate alarms for lights, pumps, elevators
- Use light utilization data to turn the lights down
- Use historical data to inform campus planning



### Gateway District

|                       | Cateway Bis |  |   |  |  |  |  |  |
|-----------------------|-------------|--|---|--|--|--|--|--|
| SYSTEMS<br>AND STATUS | 75          |  | S |  |  |  |  |  |









**CURRENT** USE

43% 1/8 **Spots** Max



**USE OVER** LAST DAY 66% 22

16

**Cycles** 

LAST WEEK

Max \$251 \$143 \$18 \$3

Cars Rides

**Cycles** 

\$28



### Better utilizing data from a group of water meters

"Developing a clear data picture from existing meters might be more valuable than installing a thousand new ones. The proliferation of new sensors should not outpace our efforts to take action using existing data streams."



#### **Business Challenges**

A. Meet campus 20% water reduction goal

#### Solution

- A. Publicly display usage data
- B. Integrate data systems with the PI Server (in progress)
- C. Work with stakeholders to identify ways to save



#### **Results and Benefits**

- We know where we stand
- Better defined ownership
- Healthy peer pressure

#### Campus domestic water system



#### Publicly display usage: water.ucdavis.edu





#### Integration with the PI System

- Real-time demand for domestic and landscape irrigation water: in the PI System from Wonderware, displayed through PI Web API/PI Web Services
- Monthly totals: currently through manually read meters; to be integrated with the PI System in real-time or through PI Manual Logger

#### Results

#### **Utility Water Use for 2014 and 2013**

Total Use in 2014 was 70% of 2013 Baseline





#### Results

- We know where we stand
- Better defined ownership
- Healthy peer pressure

### Questions

Please wait for the microphone before asking your questions

State your name & company





# IHANK Y()

Especially to our project team at Microsoft and OSIsoft