

Making Data Actionable Success Stories

David Doll Industry Principal, Critical Facilities

18 FEB 2016

Are you treating energy like a fixed cost or a variable cost?

Efficiency Consumption

Story Time

MLB: Self Service Intelligence

That's going to enable 29 other teams to adopt the kind of behavior that's helped us return more than \$1.5 million to our bottom line in just 4 years."

- Scott Jenkins, VP Operations Seattle Mariners

A Robust Data **Management System** for Integrating Campus **Sustainability Goals**

Presented by Joshua Morejohn, PE David Trombly, PhD

CHCP - BOILER PLANT

OA REL HUM

ICP COOLING PLANT PERFORMANCE EQUIPMENT METRIC LAST 4 HOURS

B PLANT EFF kW/Ton

C PLANT EFF kW/Ton

Boiler 4 Stack Inlet Temperature

This graph is a comparison of your current energy demand and your daily goal. If your energy demand is below your goal and the area on the graph is green, you're doing great!

The lighting circuits turn off in pre-set 1-minute intervals. The downward

Automated Meter Reading and Data Acquisition using the OSIsoft PI System

Presented by Craig Bradford, PE, Engineering & Utilities craig_bradford@harvard.edu

osisoft. REGIONAL SEMINARS 2015

Dunster House Renovation

ration

Show energy, heating, cooling

By building, day, week, month

Units in kW, kBTU, \$\$, or green equivalents

Driving Business Value through Enterprise Agreements and Partnering

Presented by Dwayne Kalma and Tyler Duncan

CRAC = computer room air conditioning; PDU = power distribution unit; UPS = uninterruptible power supply

MDC (Modular Data Center) Major Elements

100% free-air w/ evaporative cooling

Integrated switchboard

N+1, concurrently serviceable and maintainable

24-rack MDC

50kW/rack

Redundant power to rack

"Hot" removable racks for easy IT refreshes

MDC Partnership Results

Standardize

Repeatable process

Simplify

Reduce human error

Maintenance

Improved warranty/SLA via commissioning data

Shorten

Reduced integration from 2+ weeks to 4 hours

Data management and analysis for energy efficient HPC centers

Ghaleb Abdulla, Anna Maria Bailey and John Weaver

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC

Sequoia Parameters

- IBM Blue Gene*/Q architecture
- 98,304 nodes
- 1,572,864 cores
- 20 PF, 3rd on Top 500 June 2013
- 96 racks
- 91% liquid cooled
- 30 gpm/rack at 62 F
- · 9% air cooled
- 1700 cfm/rack at 70 F
- 4800 square feet
- *Copyright 2013 by International Business Machine Corporation

Current data sources spread across LLNL

180 KW

Processor performance

Normalized slow-down

Carnegie Mellon University Smart Campus, Smart City

Bertrand Lasternas

Researcher Center for Building Performance and Diagnostic, School Of Architecture

Background: Carnegie Mellon University

Founded in 1900 by Andrew Carnegie

12,991 Students (6223 undergrad)

5000 faculty / staff

CMU annual energy budget over \$20M

That's over \$1,600 per year per student!

Goal:

Improve by 30%

Why we didn't save energy?

The Intelligent Workplace

The Robert L. Preger Intelligent Workplace, built in 1997, is a 7000 square foot living laboratory of office environments and innovations located on the campus of Carnegie Mellon University.

Test and Integration of several systems:

- Heating
- Cooling
- Ventilation (mechanical and natural)
- Lighting, and day-lighting
- Electrical / Plug load

Facility Manager Interfaces

Public Interface

Real-time Dashboard on Touchscreen Displays

(ID-F) Data Analytics

Real Time Measured data for meaningful diagnostics

What we learned?

Integrate ALL information

Continuously monitor and diagnose building performance

Information needs to be accessible to the consumers (public, faculty, students)

Building occupants need control in order to change behaviors

Reduced Energy Consumption by 30%

What did we cover?

- The variable cost of energy
 - What is your product?

- Continuous Improvement
 - Enable creativity for future ideas

- Help them help you
 - Enable stakeholders to have an impact

Contact Info

David Doll

ddoll@osisoft.com

Industry Principal, Critical Facilities

OSIsoft, LLC

Thank You

www.osisoft.com/corporate/facilities

