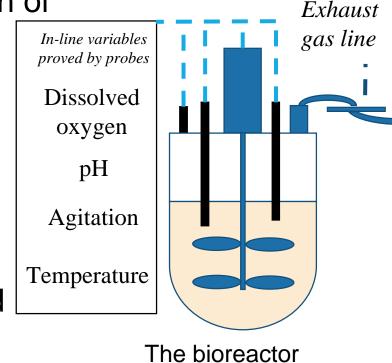


PI System in a Lab-Based Course: Bio Engineering at MIT

Presented by **Erica Trump Alexander Kendrick**



Chemical - Biological Engineering Laboratory

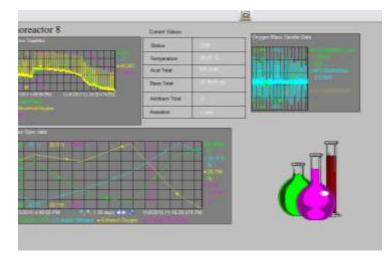
 Revamped, project-based version of Chemical Engineering Unit Operations

- Course objectives include:
 - Hands-on experience with bioprocesses
 - Experimental design
 - Exposure to industry-standard tools

The Life Sciences Story at OSIsoft

GILEAD

More reasons for PI


- Real-time monitoring and analysis
- Less data pushing, more time spent on scientific insights and design
- Students pool results
- Retain knowledge from past semesters
- Remote monitoring ability
- Integration with tools such as MATLAB

Classroom rollout

- System setup and education of lab staff
- Start small in pilot semester
- Introduce students to PI Visualization Tools
 - Workbooks with step-by-step instructions, tie-ins to OSIsoft Learning YouTube channel, and student exercises
 - Training databases with simulated Unit Operations data

Classroom rollout

- Assignment 1
 - PI DataLink to analyze simulated process data
- Assignment 2
 - PI ProcessBook to prepare bioreactor displays to be used throughout course

An example student display

Classroom rollout

- Assignment 3
 - Analyze real-time results from experiments
 - Students pool results
 - Explore effects of a wide range of independent variables

Student interaction during a mass transfer experiment

- Outline:
- Improve the Students Understanding Bioreactors with PI
- New Lesson to the Syllabus
 - Integration of Outside Data Analysis

Working PI into the Syllabus: Future Plans

Improving the Students Understanding of Bioreactors with PI

Use previous PI data from early semesters to educate the students to use PI

Benefits:

- Project relevant teaching
- Increased student motivation
- Improved experimental design

New lesson to the Syllabus

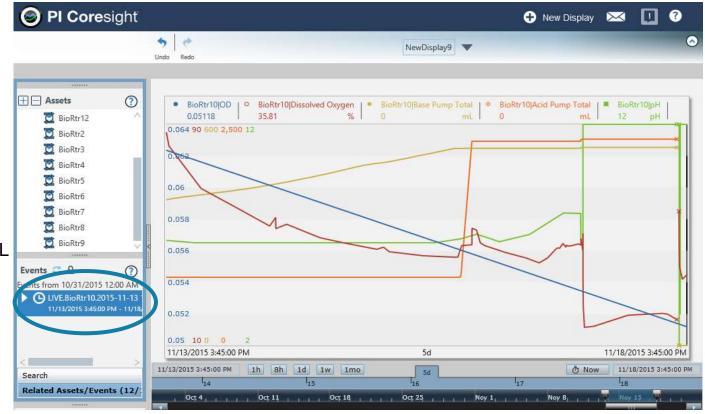
- The new lesson was tested with incoming researchers in the Hamel laboratory in the Spring term (IAP).
- The goal was to not only have the students present data as they became accustomed to PI but to also learn to interpret data.
- In this, we created case studies to get students to begin to think about their reactors and make the connections of what they data is communicating
 - Event frames were implemented to bookmark experimental runs to make finding experiments easier

Example of the New Teaching Style

Students are given an event and the desired parameters that the reactor should keep throughout the process as well as reactor type.

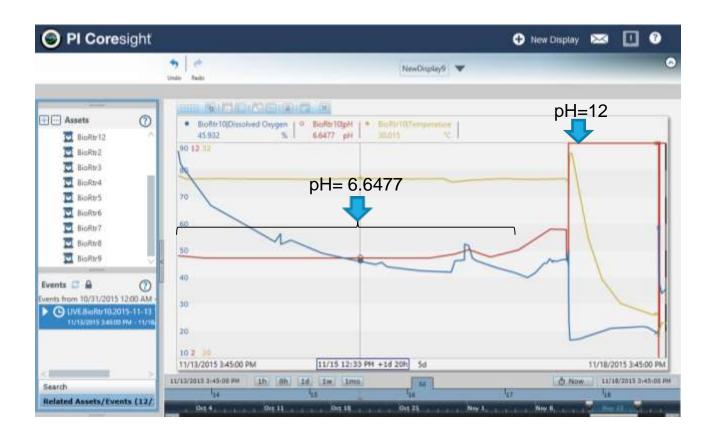
Example parameters:

Reactor type: Batch


Reactor working volume: 1.5L

pH= 7 T=30C

Stir rate: 300rpm


Dissolved Oxygen: not

controlled

Students will be encouraged to make their own displays and access odd occurrences in the trends.

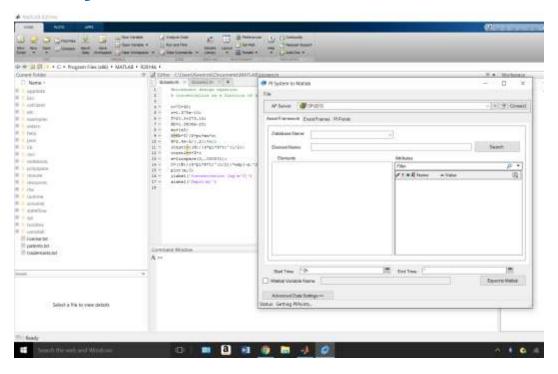
The students will notice pH is amiss (pH≠ 7) and will investigate acid and base addition values

PI Coresight H New Display 4 NewDisplay9 Undo Acid and Base Trend Values > working volume Home ▶ HamelLab ▶ BioRtr10 Q BioRtr10|OD | O BioRtr10|Dissolved Oxyger BioRtr10|pH 0.055658 49.091 2,309 7.0045 pH Exhaust Oxygen 0.064 90 500 2,500 12 OXC RMS flow RQ. Process Values 0.06 Acid Pump Total AntiFoam Pump T ... 0.058 Base Pump Total Dissolved Oxygen 0.056 PH pH Stir Rate 0.054 Substrate Pump Tr Temperature 0.052 System Communication U 0.05 10 0 Lifebeat 5d 11/16 3:41 PM +2d 23h 11/13/2015 3:45:00 PM 11/18/2015 3:45:00 PM 11/13/2015 3:45:00 PM 1h 8h 1d 1w 1mo & Now 11/18/2015 3:45:00 PM Search Related Assets/Events (12/

Oct 4 , , , Oct 11 , , Oct 18 , , , Oct 25 , , , Noy 1 , , , Noy 8 , , , , , Noy 15 , , ,

Students will see that the acid and base additions are illogical and diagnose the problem.

Integrating Outside Data Analysis Tools


We plan to introduce MatLab data manipulation to the current syllabus

- Students are already familiar with Matlab by this point in their studies
- A program, the PI-to-MATLAB Utility, supplied by OSIsoft already exists and is easily accessible
- The additional computing capacity will allow the students complete the carbon mass balance to analysis cellular metabolism

The PI-to-MATLAB Utility

The Pi-To-MatLab shortcut directly opens MatLab and allows you to access the PI server is credentials are acceptable

Contact Information

Erica Trump, PhD

etrump@osisoft.com
Instructional Systems Designer
OSIsoft

Alexander Kendrick
ankendri@mit.edu
Laboratory Assistant/Researcher
MIT

Jean-François Hamel, PhD jhamel@mit.edu Principal Investigator MIT

감사합니다

Danke

谢谢

Gracias

Thank You

ありがとう

Спасибо

Obrigado

Merci