LEVERAGING CONTINUOUS PROCESS DATA

Tila Franca Manager, Process Engineering
Stacey Cox Manager, Automation Manufacturing Support

BioMarin Pharmaceutical Inc.
April 6, 2016
BioMarin at a Glance

BioMarin Pharmaceutical Inc. (Nasdaq: BMRN) develops and commercializes promising first-in-class or best-in-class therapeutics for patients with serious diseases and medical conditions.

BioMarin Pipeline

<table>
<thead>
<tr>
<th>Preclinical Testing</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>BLA</th>
<th>NDA</th>
<th>MAA</th>
<th>Commercialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAGLAZYME® (galsulfase) for MPS VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDURAZYME® (laronidase) for MPS I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KUVAN® (sapropterin dihydrochloride) Tablets for PKU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firdapse® (amifampridine) for LEMS (EU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMN 110 for Morquio A Syndrome (MPS IVA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEG-PAL for PKU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMN 701</td>
<td></td>
<td>IGF2 (GAA) for Pompe Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMN 673</td>
<td>PARP Inhibitor for Genetically Defined Cancers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMN 111</td>
<td>Analog of CNP for Achondroplasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMN 190</td>
<td>TPP1 for Late Infantile Ceroid Lipofuscinosis (Batten Disease)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the most current pipeline info, please visit www.BMRN.com.

April 7, 2016
How we adopted it: Beginning

- Implemented new historian to capture data in 2 facilities
- Accessed Historian through Excel
- Used Batch Context for lot release
How we adopted it: Middle

- Increased production run rates and had new drug approval!
 - Integrated historical data with analytical tools
 - Began to use continuous process data for planning and scheduling
How we adopted it: Current

- Added a 3rd facility and went global
- Enterprise Agreement allowed for:
 - Troubleshooting Data Streams
 - Leveraging COE for global MFG network architecture
 - Additional data points for equipment with no $$ hurdles
- Began to use Multi-variate online monitoring
- Began to use templates as a harmonization tool
How we adopted it: Summary

We have been able to grow our historical data needs with the growth of the company
Analytics

• Specific analytical tool (most analyses are not in historian)
 Why?
 • More out of the box functionality (t-test, anova, etc)
 • Contextualization of data into manufacturing process
 • Lineage

• Integrated historian and analytical tool
 Why?
 • Correlations: O2 flow rate in bioreactor is correlated with a critical quality attribute

• Calculations:

 \[Q_p = \left(\frac{dTiter}{dt} + \frac{Harvest \ Flow \ Rate}{Vessel \ Volume} \right) \times \frac{Viable \ Cell \ Density}{Vessel \ Volume} \]

• Trending:

• Result = Increased Process Knowledge
Templates as a Harmonization Tool

- Integrating historian with the analytical tool can be complex
- Templates vastly simplify this integration
 - Ex: replaced equipment
 - New tag names
 - New batch interface
 - Leveraged versioned templates
 - Detailed configuration takes place in the historian
 - Ex: differing naming conventions in different facilities
 - Facility 1: SK####.AIT04.PV
 - Facility 2: 11-LHS-###-01.AIT04A.ADVal

\FacilityServer\%@SkidPrefix%.%@UV_Postfix%
Planning & Scheduling

• Specific production process simulation tool
 • Flexible, customizable platform can simulate an array of operational modes (batch, fed-batch, and perfusion) and factor in site-specific resources and constraints
 • Used for long-range planning, scenario testing, identifying bottlenecks and optimization opportunities, and performing finite scheduling

• Integrate with continuous process data
 • Incorporate historical performance and variability into production simulations
 • Increase the accuracy of our projections

• High-level planning
 • Perform long-range planning with an understanding of historical performance
 • Answer a variety of questions, such as:
 • How can we make more/faster Product X in its licensed facility? What resources become constrained?
 • With a mix of manufacturing lines drawing from shared utilities, can the supply of utilities support the projected demand?

• Finite scheduling example
 • Enhance scheduling capabilities of a perfusion process when the downstream operations cadence is a function of the perfusion rate
Real Time Multivariate Monitoring

• Benefits of Real Time Multivariate Monitoring:
 • Simplicity
 • One parameter to watch
 • Drill down functionality
 • Golden Batch Comparison
 • Easy to compare
Real Time Multivariate Monitoring

• Benefits of Real Time Multivariate Monitoring:
 • Simplicity
 • One parameter to watch
 • Drill down functionality
 • Golden Batch Comparison
 • Easy to compare
Real Time Multivariate Monitoring

• Benefits of Real Time Multivariate Monitoring:
 • Simplicity
 • One parameter to watch
 • Drill down functionality
 • Golden Batch Comparison
 • Easy to compare
Real Time Multivariate Monitoring

• Benefits of Real Time Multivariate Monitoring:
 • Simplicity
 • One parameter to watch
 • Drill down functionality
 • Golden Batch Comparison
 • Easy to compare
Future State of Continuous Process Data

- Re-architect historical data collection system for our Global Manufacturing Network
- Leverage Continuous Process data for company Sustainability goals
- Continuous to build out and leverage templates to harmonize across all global facilities