

Regional Seminar Series

Anchorage, Alaska

Leveraging real-time data UAF

Chilkoot Ward Director of Utilities University of Alaska Fairbanks

September 16, 2010

About UAF

- We are "America's Arctic University"
- Established in 1917
- Approximately 10,000 students.
- 3,000,000 square feet of academic, research, administrative and housing space
- UAF ranks fifth among small research universities in the nation and among the top 10 universities in atmospheric science and environmental sciences.

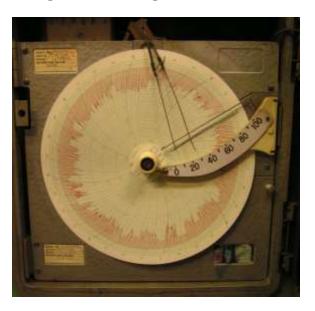
• Research dollars coming to UAF have increased substantially, from \$56.4 million in

FY97 to \$113 million in FY07.

UAF Central Utilities at a Glance

- Steam Heat
 - Two 50,000 lb/hr coal boilers (1964)
 - One 100,000 lb/hr oil boiler (1972)
 - One 100,000 lb/hr oil or gas boiler (1986)
- Electricity
 - 10 MW steam turbine (1980)
 - 9.6 MW diesel engine generator (DEG) (1999)
 - 4,160 volt distribution system (1964-present)
 - 12,470 volt switchgear (2010-2011)
- Drinking and Fire Protection Water
 - 1 MGD Water Treatment Plant (1979)
- Walk Through Utilidor System
- 1,800 ton district Chilled Water system(Lower Campus Only) (2005)

History of Plant Automation



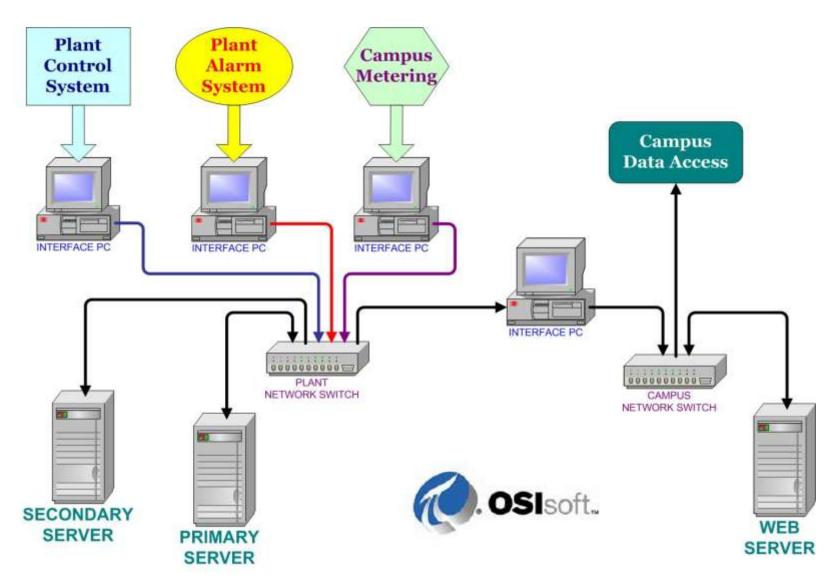
Years of constant migration:

- Originally all pneumatic controls, conceived as a teaching lab
- Converted to Analog electric controls
- Converted to DCS
- Evolving to more distributed control and monitoring including field bus

Data collection history:

- Clipboards
- Strip chart recorders (pneumatic and electric)
- Electronic collection with printing on paper
- Electronic collection with electronic storage
- Electronic collection with one database

The Data Mess at UAF



Data collection system architecture

OSIsoft Software and Services Used

Currently UAF uses

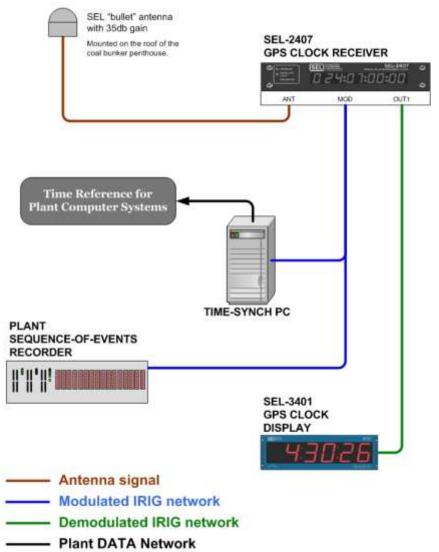
- PI Server
- PI ProcessBook
- PI DataLink
- PI Manual Logger
- PI ActiveView
- PI to PI Interface
- PI System Management Tools (PI SMT)
- PIAlarmView
- Several PI interfaces
- PLAF

Planned software implementation

- PI OLEDB Provider
- PI DataLink for Excel Services
- PI WebParts
- PI Advanced Computing Engine (PI ACE)

Data Sources

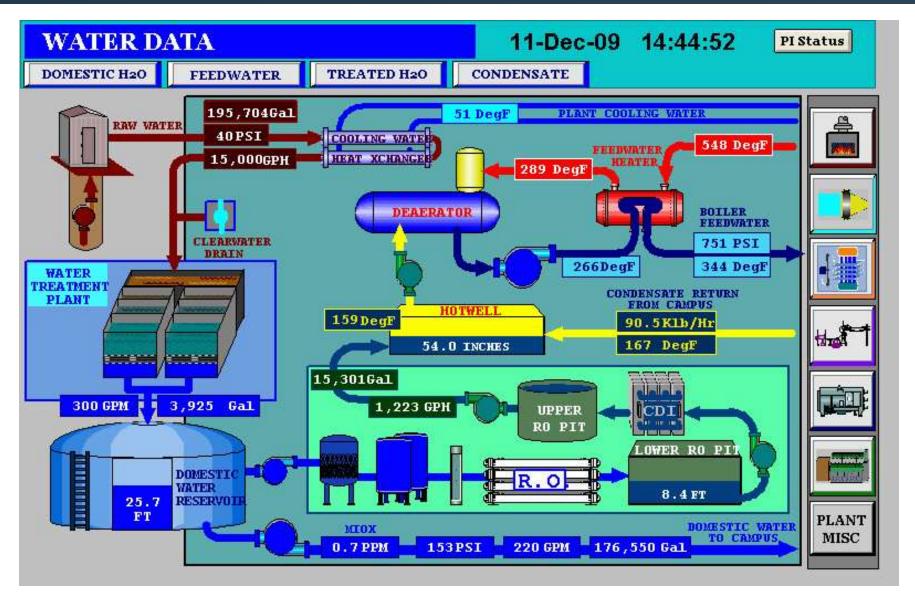
- CHP equipment
- Water treatment plant
- Chilled water plant
- Building automation system
- Campus energy monitoring system
- Or a small portion of UAF's 360+ million acre campus



Time

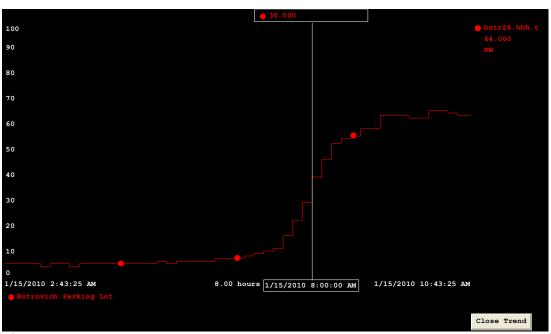
How to keep all the computer clocks synchronized

UAF Utilities GPS Clock System and IRIG Time Synch Network

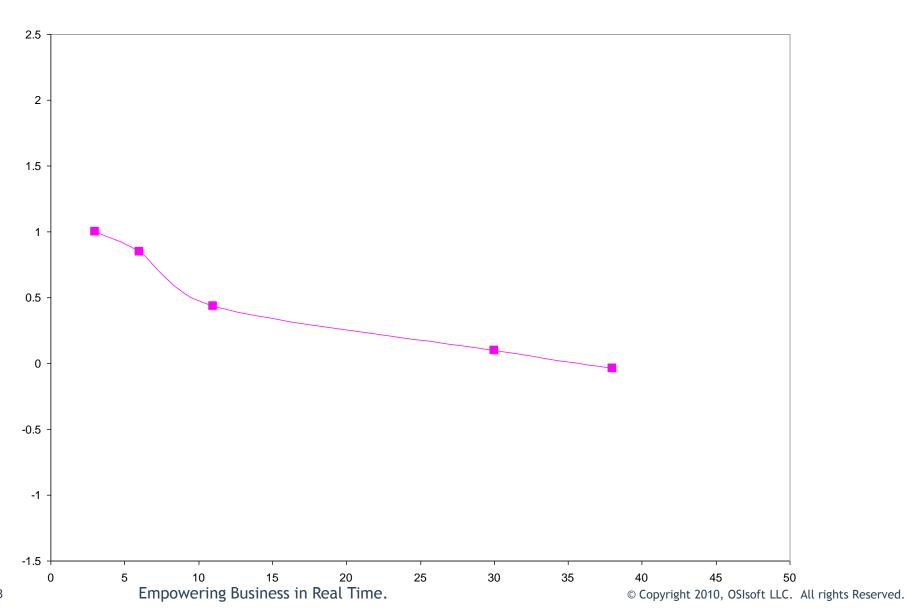

Old Style Displays

	High Current Low 9.0 9.1 -0.4 25-Nov-09 12:03:09	
	TG3 Steam & Uncontrolled Extraction Trends	Summary
o07FT003	TG3 Steam Flow	
o07TE019	TG3 Steam In Temperature	
007PIT005	TG3 Stop Valve Pressure IN	2
007PIT008	TG3 Stop Valve Pressure OUT	
007PIT007	TG3 1st Stage Pressure	3
007FIT006	TG3 Uncontrolled Extraction Flow 9,826 Lb/Hr	4
o07TE012	TG3 Uncontrolled Extraction Temperature 516 Deg F	4
007PIT044	TG3 Uncontrolled Extraction Pressure 145 PSI	5
	TG3 Exhaust & Uncontrolled Extraction Trends	6
o07FIT009	TG3 Controlled Extraction Flow	7
007TE011	TG3 Controlled Extraction Temperature 262 Deg F	7
o07TE013	TG3 LP Bleed Heater Temperature 145 Deg F	8
007TE010	TG3 Exhaust Temperature	
007PIT004	TG3 Exhaust Pressure	9
o08FT020	Condenser Condensate Return Flow	10
008ZIT020	ACC3 Fan Speed %	
	Distribution Steam and Condensate Trends	
008TE022	ACC3 Condensate Tank Temperature 98 Deg F	12
o08TE015	ACC4 Condensate Tank Temperature	13
o19FIT001	Distribution Steam Flow	
o19TE004	Distribution Steam Temperature 267 Deg F	14
o19PIT003	Distribution Steam Pressure 20.1WR 16.3 PSI	15
o08FT016	Condensate Return Flow	15
009TE016	Condensate Return Temperature 162.1 Deg F	16
В	ldg 909 Blr Status: OFF Bldg 919 Blr Status: OFF	

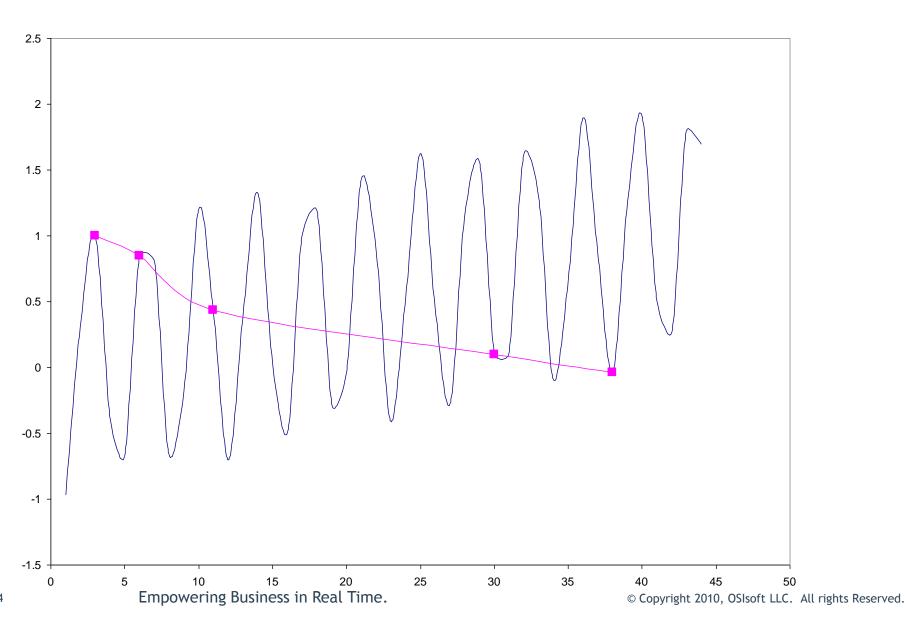
New Displays


What to Measure

Measure everything

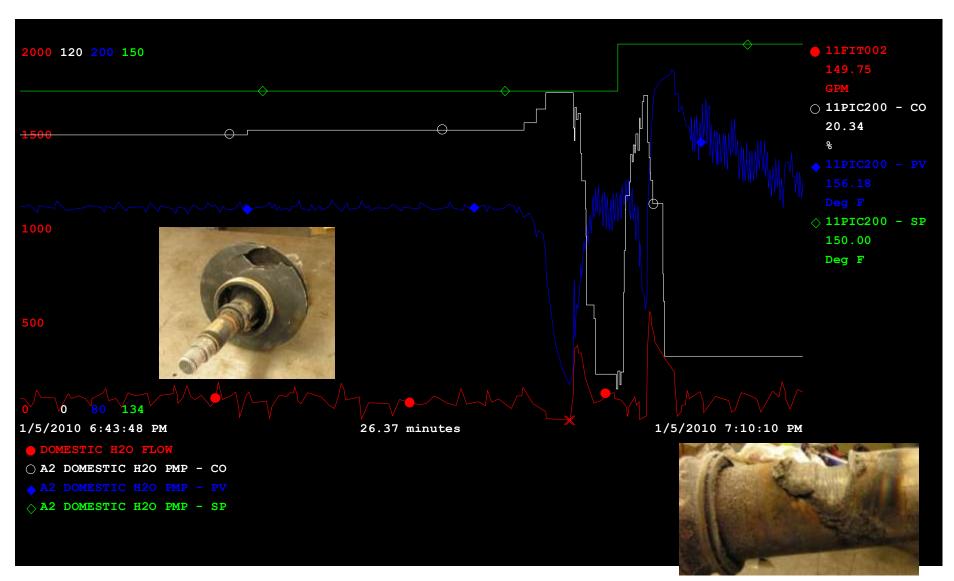

- Including Set points and control outputs
- Measure rate data whenever possible
- Connect to as many data points as possible
- One Storage database with a single reporting tool

Trend everything


Manual readings

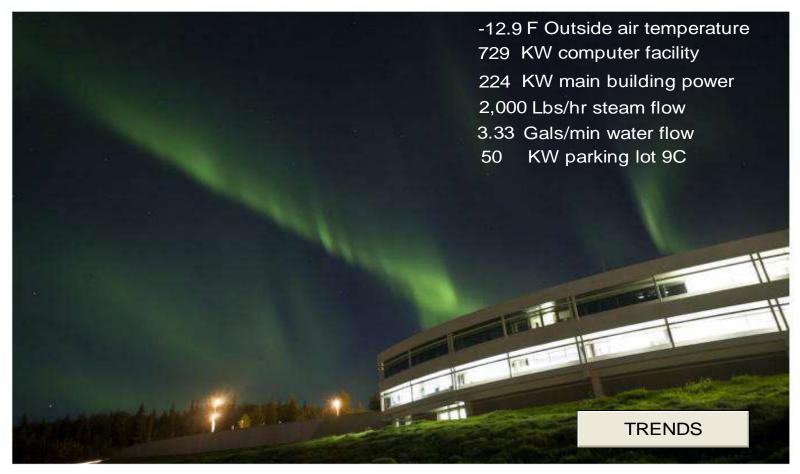
The Real data can be hidden!

Electronic clipboard



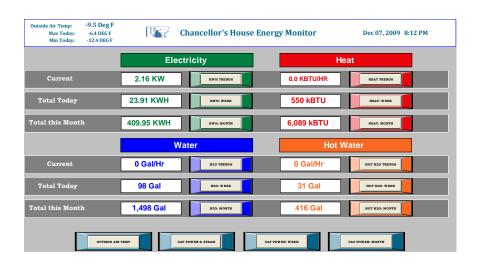
Destruction of A2 domestic water pump

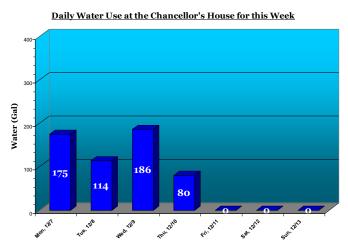
The Plan to Save

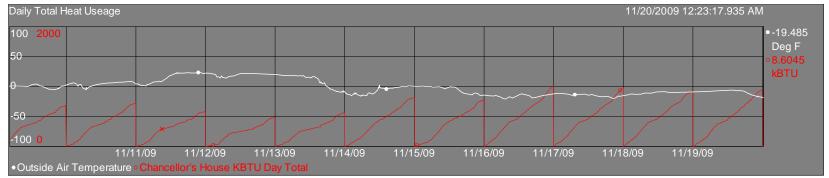


- Currently the campus users have know idea the amount of energy they consume, or what it costs.
- We are switching from a "utilities are free" model to utilities billed on actual usage.
- We will accomplish this using the same data collection system we already have in place.
- The key to conservation success is visibility into cost and performance data that spans the entire chain of energy production and use across the university

Energy Kiosk




CURRENT ENERGY USE



Chancellors house

Reporting

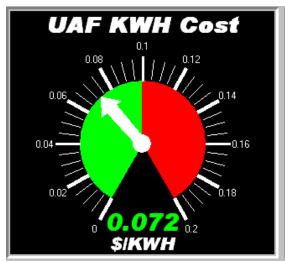
Reports generated

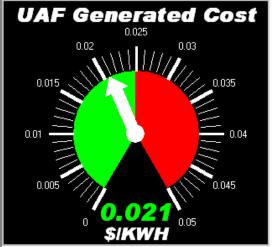
- Hourly
- Daily
- Weekly
- Monthly
- Environmental
- •EIA
- Ad hoc reports

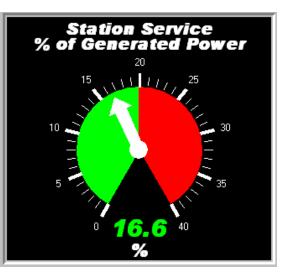
12/11/2009

	Jul-09	Aug-09	Sep-09	Oct-09	Nov-09	Dec-09 Summary	
Bir 1 Coal Usage Bir 2 Coal Usage	1,919.8	3,298.1 1.330.2	3,265.1	3,386.4 3,312.9	3,263.1 3,220.8	15,132.4	Tons
Fotal Coal Usage	3,447.9 5,367.7	4,628.3	3,135.1 6,400.2	6,699.3	6,483.8	14,446.9 29,579.4	Tons
Bir 3 Oil Usage	14,999.9	0.0	0.0	466.5	12,350.8	27,817.2	Gal
Bir 4 Oil Usage	64,092.9	99,852.2	1,994.3	3,944.4	104,110.0	273,993.8	Gal
OGEN OII Usage	2,300.0	0.0	0.0	0.0	0.0	2,300.0	Gal
Total Oil Usage	81,392.9	99,852.2	1,994.3	4,411.0	116,460.8	304,111.1	Gal
Bir 4 Natural Gas Useage	42,553.0	0.0	0.0	0.0	0.0	42,553.0	MCF
Bir 1 Steam Gen	19,078.2	33,557.8	33,432.4	34,019.2	33,753.9	153,841.5	KIb
Bir 2 Steam Gen	34,873.3	15,154.8	33,640.0	34,348.6	33,684.9	151,701.6	KIb
Bir 3 Steam Gen Bir 4 Steam Gen	1,414.4 7,035.1	10,816.3	0.0 191.0	38.1 431.9	1,174.3 11,458.8	2,626.9 29,933.1	KIb
Fotal Steam Gen	62,401.01	59 528 94	67.263.34	68.837.85	80 071 94	29,933.1	Kib
Steam Flow Average	62,401.01 83.87	79.99	93.42	92.52	111.05	338,103.04 92.04	KID/H
Steam Flow Peak	101.86	99.35	105.75	109.84	148.04	148.04	KIB/H
Bir 1 Max Steam Flow	51.87	53.78	52.48	52.66	53.67	53.78	Kib/H
3ir 2 Max Steam Flow	56.08	52.55	56.37	55.08	54.44	56.37	Kib/F
Bir 3 Max Steam Flow	41.16	0.17	1.04	16.18	27.03	41.16	KIb/H
Bir 4 Max Steam Flow	35.38	51.06	31.16	18.31	41.26	51.06	KIb/H
RSG Max Steam Flow	4.94	0.00	0.00	0.00	2.97	4.94	Klb/H
Bir 1 Min Steam Flow		18.79	24.93	26.00	34.20	18.79	Klb/H
Bir 2 Min Steam Flow	15.44	0.00	22.97	26.24	32.22	0.00	KIb/H
Bir 3 Min Steam Flow	0.00	0.00	0.00	0.00	0.00	0.00	Klb/F
3Ir 4 Min Steam Flow	0.00	0.00	0.00	0.00	0.00	0.00	KIb/F
IRSG Min Steam Flow	0.00	0.00	0.00	0.00	0.00 5.07	0.00	KIb/F
Bir 1 Evap Avg Bir 2 Evap Avg	2.65	4.86 3.29	4.89 5.18	4.80	5.07	4.46 4.68	Lb/L
Bir 3 Evap Avg	0.94	0.00	0.00	0.04	1.16	0.43	Lb/L
iir 4 Evap Avg	6	8	0.00	1	13	5	Lb/L
Coal BTU	7,946.00	7,650.00	8.071.00	7,250.00	8,432.00	7,870	BTU
Bir 1 Efficiency Avg (%)	35.94	65.03	66.10	66.02	65.81	59.98	96
Ir 2 Efficiency Avg (%)	67.62	46.95	71.20	68.68	67.12	64.31	96
RSG Steam Gen	60.2	0.0	0.0	0.0	7.2	67.3	KIb
list Steam Flow Total	41,827.79	39,992.53	41,481.36	42,153.97	58,844.50	224,300.15	KIb
list Steam Max Flow	65.57	62.04	69.88	73.09	108.09	108.09	KIb/H
Dist Steam Avg Flow	56.2	53.8	57.6	56.7	81.6	61.2	KIb/H
Condenser Steam Total	19,575.50	18,663.85	22,348.97	22,745.22	13,033.22	96,366.75	KIb
NSB Cond Return			METER SINCE				KIb
Hotwell Makeup Total Bir Makeup H2O	322,484.93 4.3	369,895.18 5.2	327,807.80 4.1	488,341.49 5.9	677,776.27 7.1	2,186,305.67 5.3	7 Ga %
Sir Makeup H2O Sampus RO H2O	4,620.02	5.412.00	7.558.03	9.225.10	11.932.13	38.747.27	- Ga
G1 Power Generation	10,40	0.00	0.00	0.00	0.01	10,41	MW
G2 Power Generation	0.00	0.00	0.00	0.00	39.58	39.58	MIA
G3 Power Generation	4.446.01	4.219.95	4.832.58	4,874.35	4,683,10	23,056.00	MW
GEN Power Generation	24.84	0.00	0.00	0.00	5.34	30.18	MW
Total Power Generation	4.480.76	4.220.00	4.832.55	4.874.42	4.728.00	23.135.73	MW
ower in from GVEA	1,435.37	1,226.68	695.11	671.26	888.45	4,916.87	MW
ower Out to GVEA	0.24	0.39	0.48	0.30	0.00	1.41	MW
eak Power in from GVEA	6.36	4.92	3.53	3.10	3.40	6.36	MW
Peak Power out to GVEA	0.27	0.32	0.20	0.15	0.00	0.32	MV
ampus Power Use Max	9.05	8.71	8.49	7.73	8.73	9.05	MW
ampus Power Use Min	5.2	5.0	5.2	5.5	5.6	5.0	MW
eeder 1	440.40	429.73	445.93	461.92	456.44	2,234.41	MWI
eeder 2 eeder 3	693.18 310.60	673.43 305.28	648.29 367.24	653.20	553.45 388.46	3,221.55 1,761.47	MW
eeder 3 eeder 4	510.60 664.53	305.28 505.68	367.24 471.88	449.39	388.46 435.45	1,761.47 2,526.94	MW
eeder 5	354.95	379.42	471.55	463.38	554.42	2,176.62	MW
eeder 6	325.44	317.71	316.94	341.89	340.33	1,642.32	MWI
eeder 7	392.78	404.80	434.90	450.23	465.47	2.148.18	MWI
eeder 8	537.99	488.87	466.71	491.03	538.03	2,522.63	MW
eeder 9	0.06	0.00	0.09	0.00	37.93	38.09	MW
eeder 10	0.00	0.00	0.00	0.85	19.46	20.31	MWI
eeder 11	1,028.58	852.38	828.74	783.47	777.39	4,270.57	MWI
eeder 12	264.64	268.94	274.91	289.80	301.16	1,399.45	MWI
ampus Use	5,011.79	4,624.55	4,679.42	4,772.18	4,866.85	23,954.78	MWI
tation Service 1	266.48	308.25	316.49	321.87	311.57	1,524.67	MWI
tation Service 2	273.93	182.92	230.95	270.24	247.88	1,205.92	MW
tation Service 3	45.44	55.75	59.28	47.57	49.69	257.73	MW
	53.5	47.9 594.78	45.5 652.26	51.2 690.89	50.3 659.40	248.36 3,236.67	MW
				690.89	659.40	3,236.67	
lant Usage	639.34			0.400	6.636	77.404	
Plant Usage Total Usage	5,651	5,219	5,332	5,463	5,526	27,191 esn	
Plant Usage Otal Usage Oddity Factor	5,651 265	5,219 227	5,332 195	82	90	860	MWI MWI
Plant Usage Total Usage Oddity Factor Domestic H2O	5,651	5,219	5,332				MWI Gas
Itation Gervice - DGEN Ilant Usage Iotal Usage Iodally Factor Iomestic H2O Ioliler Tornnage Ioliler Tornnage	5,651 265 11,845,588.3	5,219 227 8,722,966.7	5,332 196 9,203,399.0	82 9,138,869.2	90 8,014,083.1	860 46,924,906.3	MWI Gas

Info on data collection system

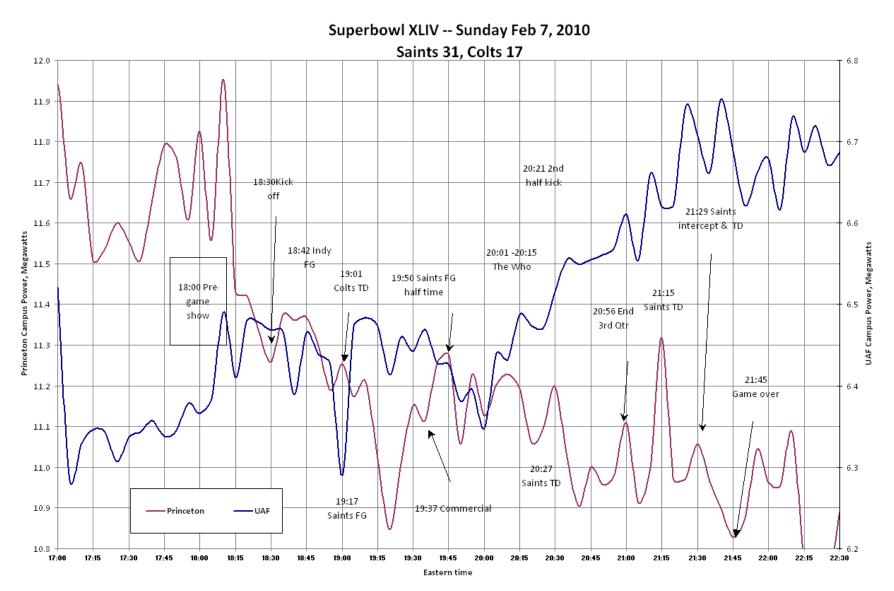

- Over 5,000 data points connected
- Data from 330 building energy meters
- 10 years of historical data online (9 more stored)
- This is accomplished with 15 computers
- •Data interfaces using either OPC, Modbus TCP/IP, Batch file, or API
- Uses osisoft. high availability PI system




Uses of Data

- Intelligent Ash system
- Soot blowing optimization
- Utilities master planning including building modeling
- Baghouse improvements
- Tuning process loops
- Key performance indicators (KPI)

Academic uses of Plant Data


- •Live plant data is used in the introduction to engineering classes
- Live data is used in the process technology classes
- Historical data is being used in engineering design projects

Intangible Benefits

Questions

Photos by Todd Paris
UAF Marketing and Publications

Thank you

© Copyright 2010 OSIsoft, LLC.

777 Davis St., Suite 250 San Leandro, CA 94577