

Regional Seminar Boston

Condition-Based Maintenance (CBM) - PSE&G Case Study

November 2010

Keith Pierce Center of Excellence (CoE) Engineer OSIsoft

AGENDA

- CBM Background
- PSE&G Overview
- Motivating Factors & Background
- System Overview
- Condition Assessment
- Benefits
- Q&A

Condition-Based Maintenance

Definitions

Maintenance Evolution - Reliability

Terms & Definitions

- Predictive Maintenance (PdM)- using a parameter to determine when an asset may fail
- <u>Condition Monitoring (CM)</u> using a parameter or information about an asset to determine its condition (in regard to that specific parameter)
- Condition-Based Maintenance (CBM)- determining maintenance schedules based on condition type indicators
- <u>Model-Driven Monitoring</u> based on optimal model for current conditions.
- Reliability Centered Maintenance (RCM) -includes processes to ensure assets perform as required may involve all of the above plus ancillary functions (training, parts, etc.)

CBM & Maintenance Process

Condition-Based Maintenance (CBM)

- Maintenance Plan Fundamentals
 - Quantitative

99999

- Qualitative
- Requirements
 - Indicative Data
 - Integration with Work Management
- Implementation Lifecycle
 - It's a journey very easy to start small
 - Motivate Key Personnel
 - Change Management

PSE&G Customer Case Study

Condition-Based Maintenance at an Electric Utility

PSE&G

- Utility Overview
 - New Jersey Based
 - Total Assets ~ \$14 Billion
 - Total Revenue ~ \$7 Billion
- Service Territory
 - 70% of New Jersey's population
 - 2.0 million Electric customers
 - 1.6 million Gas customers
 - 2,600 Square Miles
- Delivery Implementation
 - 1999 SAP
 - 2000 OMS, GIS & CAD
 - 2002 CMMS

CBM Scope

Outlet

PSE&G Customer Case Study

Business Challenge / Problems Addressed

Business Challenges

- Significant risk of system outage potential from old equipment vulnerable to failure
- No formal capital expenditure determination plan
- No formal preventive maintenance scheduling program
- Expensive Replacement Projects
- Loss of Expertise
- After an equipment failure, sufficient data collected to determine why - Asset Information in a variety of disparate systems
- Lots of features & functions in SAP PM
- Upgrades & Enhancements in Work Management, Outage Management, Distribution Operations, etc.

Business Targets

- Reduce risks of business interruption
 - Fewer outages
 - Fewer induced errors
 - More focused work effort
- Condition-based maintenance (CBM)
 - Less PM, Less CM
 - More targeted Capital Expenditures
- Work prioritization
 - · Focus on the assets in the most need and the most critical
- Capital replacement strategies
 - Target worst performing assets
- Data/information organization and visualization
 - Faster issue resolution
 - Root cause failure analysis
- Platform to support decision support solutions based on the assets and available data
 - · Circuit analysis
 - Grid conservation

Capital Replacement

Corrective Maintenance

Preventive Maintenance

Capital Replacement

Corrective Maintenance

Condition-Based Maintenance

Calendar-Based Maintenance

Before

After

Project Success Factors

- Determination of health indicator to focus asset management activities
 - Determine condition health indicators use existing information
 - Normalize indicator across asset type and family
- Provide an analysis platform for engineering activities
 - Integrate data from various disparate systems
 - · Simple, consistent tools for analysis
- Perform condition-based maintenance
 - Visualize condition health
 - Integrate with SAP PM
- ROI in < 3 years

Project Scope

- Asset Scope T&D Substation
 - Transformers
 - Breakers
 - Related Equipment (Compressors, LTC, etc.)
- Work Process Scope
 - Substation Inspections
 - Diagnostic Data Collection
 - Preventive Maintenance Prioritization
 - Asset Health Review
 - Capital Replacement Determination

Technical Components

- System Interfaces
 - SAP PM historical data
 - SAP PM measurement documents (RLINK)
 - Transmission SCADA (PI-to-PI)
 - Distribution SCADA (ETL & PI BatchFile)
 - MV-90 Load Monitoring (ETL & PI BatchFile)
 - Lab Systems DeltaX & Doble (ETL & PI BatchFile)
- Condition Assessment
 - Equation Builder
 - Diagnostic Displays

Condition-Based Maintenance

System Overview

Functional Areas

Data Collection

- SAP Asset Information
- Time-Series Data Collection Application
- Diagnostic and Inspection Data

Asset Analysis and Reporting

- Condition Assessment
- Work Prioritization
- Alerts / Notifications

Maintenance Management

- Measurement Points
- Maintenance Plan Modifications
- Notifications

System Model

Conceptual Design

System Integration

More Modern Substation

SAP PM for PSE&G Electric Delivery

- Equipment & Locations
 - Class and Characteristics
 - Nameplate
- Maintenance Plans (56k Plans)
 - Calendar-based
 - Counter-based
 - Condition-based
- Notifications
 - Damage and Cause Codes grouped by Equipment
- Equipment Visibility
 - PM Plan Cost/Hours vs. Actual
 - CM Cost

Measurement Points

- Measurement Point Types
 - Qualitative ("Real Hot")
 - Quantitative (> 220°F)
- Measurement Document
 - Absolute vs. Differential
 - Notification Generation
- Functional Uses
 - Counter Readings
 - LTC Movements
 - Runtime Hours
 - Breaker not operating
 - LTC not crossing neutral
 - Rate of Change

PI AF/MDB Definitions

- Define Module Taxonomy
 - Define Hierarchies
 - Each level has a parent-child relationship
 - Any module can appear many times in the hierarchy
 - Load the hierarchies
 - Provides context to displays and data

PI MDB Enabled Displays

PI Manual Logger

- Substation Inspections
- 300 Substations Weekly and Peak Inspections
- 20 500 points per station
- Scheduled in SAP PM
- Dispatched using CAD Dispatch over RF and CDPD
- XML file transfers of tour definition and data
- Equipment Oriented Point Collection

Inspection Design Overview

PSE&G Customer Case Study

Condition Assessment Overview

Calculation Structure

Equations

• CA =
$$F_1(M_1) + F_2(M_2) + F_3(M_3) + ...$$

- Example factor types include:
 - Average Load over time period
 - Last oil test results (SQL Query)
 - Maintenance cost data
 - Number of operations
- Factor components dependent on peer group
 - · Apply calculations by peer group
 - · Voltage, Class, Type
 - Example Groups:
 - 26KV 69KV GCB
 - 138KV+ Power Transformer
 - LTC Vacuum Tanks

Condition Structure & Maintenance

- Use of PI Module DataBase (MDB/AF)
 - Module for each level of the SAP PM hierarchy and installed functional locations and equipment
 - Defined peer groups and installed equipment modules
 - Defined factor types and equation groups
 - Created Module for each equation and for each equation factor
 - Developed displays using PI Module Database

Factor Example

- Average MVA (load) factor
 - · Type: PI Calc
 - Alias: Load in MVA
 - Start Time = *
 - End Time = *-30d
 - Mode: Average
 - Case: Assign value to factor
 - Multiplier = 0.2

Assets in Pl

Calculation Models in PI

Condition Assessment

PSE&G Visualization

PSE&G Visualization

Engineering Desktop Home

Asset Search

- Search By
 - Division
 - Substation
 - FLOC
 - Equipment

Asset Detail

Condition Assessment Detail

Results

Benefits

Tangible

- Annually document savings
- First year savings!
- 2005 Approximately \$3MM
 - Reduced Maintenance Costs
 - Failure avoidance
- More targeted and reduced Capital Expenditures

Intangible

- Platform for many other analytic efforts
- Used for limiting component determination for critical circuits
- Used for Work Prioritization ensuring the right work is performed - most PM's completed annually
- Results in quicker failure analysis
- Most reliable electric utility nationally, regionally for last 8 years (PA Consulting)

Thank you

© Copyright 2010 OSIsoft, LLC.

777 Davis St., Suite 250 San Leandro, CA 94577