

Regional Seminar Series

Detroit, Michigan, USA

Managing Infrastructure using the PI System

Sumanth K. Makunur / Priyanka Gupta DTE Energy

10/14/2010

AGENDA

- About DTE Energy
- > Technology Framework
- > Infrastructure challenges
- Solutions
- > NERC-CIP
- Benefits
- Questions?

DTE Energy - Detroit Edison

Detroit Edison

- Michigan's largest electric utility with
 2.1 million customers
- Over 11,080 MW of power generation, primarily coal fired
- 54,000 GWh in electric sales
- \$4.7 billion in revenue

DTE Energy - Detroit Edison

Plants & Performance Center

Monroe – 3,135 mw

Trenton Channel - 730 mw

River Rouge - 527 mw

Belle River – 1,260 mw

Performance Center – 11,588 mw

Greenwood – 785 mw

Generating	Capacity	Capacity
Unit	Unit	Plant
Belle River 1	625	
Belle River 2	635	
Belle River		1260
Conners Creek 15	135	
Conners Creek 16	100	
Conners Creek		235
Conners Creek		230
Fermi 2	1110	1110
Greenwood 1	785	785
Harbor Beach 1	103	103
Monroe 1	770	
Monroe 2	795	
Monroe 3	795	
Monroe 4	775	
Monroe		3135
River Rouge 2	247	
River Rouge 3	280	
River Rouge		527
St Clair 1	150	
St Clair 2	162	
St Clair 3	168	
St Clair 4	158	
St Clair 6	321	
St Clair 7	450	
St Clair		1409
Trenton Channel 7A	124	
Trenton Channel 8	122	
Trenton Channel 9	520	
Trenton Channel		766
Peakers	1224	1224
Totals:	10554	10554

Control and Technology Framework

- DCS servers and workstations ~150
- ➢ PI-HA servers 22
- > PI Interface servers PI API, PI OPC DA, etc. 57

229

Post Event Analysis DCS, PLC & PI

- Thermal Performance Calculation Engine PMAX 7
- Digital Fuel Tracking Systems 2
- > Alarm Management ProcessGuard 12
- Notification PI notification/E-notification 2
- Mobile Operator rounds IntelaTrac 3
- Continuous Emissions Monitoring Systems 18
- Electronic Protection Tagging system 7
- DCS Engineering Tool 16
- Backup 9

Process Discrete Data

Engineering Applications PMAX, DFTS, eNote, Fuel Cost Framework, Alarm Management

Post Event Analysis DCS, PLC & PI

- Primary web server for Fossil Generation Business Unit 1
- Web Visualizing Portal servers 9
- PI WebParts 1

11

Predictive Monitoring System - SmartSignal 4

Neural Network Optimization System - Neuco 2

Infrastructure Summary

Site Name	Hardware	Applications
Monroe	60	82
Belle River	56	65
Harbor Beach	21	25
Trenton Channel	27	36
River Rouge	51	67
St. Clair	57	72
Greenwood	19	26
Engineering Support	27	38
Performance Center	11	15

329

426

Multiple Layer Applications

Multiple aspects of Engineering Applications need to be monitored

- > Applications:
 - Web Applications
 - Databases
 - > Thick-clients
 - Backups

Detection & Notification

- Need
 - Hardware Status
 - Operating System Health
 - Application related issues
- Visually display warnings and failures
- Notify System Experts

- Complement Managed PI
- OSIsoft's NOC monitors our PI architecture
- > Our effort monitors our entire architecture

Support Structure

- > Small group 20 people
- Group divided into Engineering and Reliability

- ➤ Each site has an assigned Engineer/Technician who is the first-line of support
- Every Engineer is Subject Matter Expert SME for one or more systems in the Technology Framework who is the second line of support
- > Vendors are the third line of support

Challenges - In Summary

- Large Number of servers/ workstations
- Variety of applications
- > Equipment spread across various sites
- > Few Engineers maintaining several systems
- Need advance warning of failure
- Need to facilitate prompt action for system repair
- Next Step Detailed Process

Process Overview

Step 1 - Data Acquisition

Identifying Valuable information

- Inventory
- Business function of system
- Modes of system failure
- Advance warning factors

Step 1 - Data Acquisition

- > PI IT Monitor Tool available to monitor health of systems
- ➤ It includes several interfaces to capture information to PI

Step 1 - Data Acquisition

Data categorize into

Operating System

- Processor usage
- Hard-disk space
- Memory usage
- Network usage

Hardware

- Physical disk status
- Temperature
- Fan Status
- Power Supply

Application

- Application Service
- Web page
- Database
- Backup

Step 1 - Data Acquisition Operating System

- ➤ Performance data transferred using *PI Perfmon* Interface which utilizes Windows Performance Management Tool
- > Thousands of Data points Available
- Created PI tags for key health factors Processor Usage, Hard-drive Space, Memory Usage, Network Card Traffic
- > Template for selected data points

Step 1 - Data Acquisition Hardware

- Dell servers and computers
- Uninterrupted Power Supply UPS units
- > PI SNMP interface to capture data in PI
- Identified Key Hardware Information Hard disk status, memory status, power supply, fan status and temperature

Step 1 - Data Acquisition Application

- Operating System and Hardware information is standard for most systems
- > But application information varies from system to system Architecture, platform etc.
- > Typical Architecture
 - Client/Server Applications PI Perfmon Interface
 - > Web applications PI TCPResponse Interface
 - Databases -RDBMSPI Interface

Step 2 - Data Analysis

- Numerous data points available giving indicators of health status
- > Need to calculate an overall health status of a server
- ➤ PI Advanced Calculation Engine (*PI ACE*) using PI Module Database
- Custom Code
- Performance Equations

Step 2 - Data Analysis

Step 2 - Data Analysis

- Example Application server hosting web portal, database connection and PI Interface
 - Website TCP response < 5 seconds
 - IIS windows service running

- Database Availability = "Online"
- Timestamp by Windows Service current

- Application Services Running
- PI Interface Health Status

Step 3 - Displays/Notifications

Notification

Acknowledgement

Escalation

Distribute Data

Facilitating corrective action

Step 3 - Data Distribution PI Notification

Date: Monday, April 12, 2010 01:14PM

Subject: fpc-ec-mirro Status

History: Some This message has been forwarded.

```
Attribute Value:
```

```
\\.\.\fpc-ec-mirro|ServerName: ps-fpc-ec-mirro
```

\\.\.\fpc-ec-mirrd|OS: Warning

\\.\.\fpc-ec-mirro|OS_Source:

\\.\.\fpc-ec-mirro|HW: OK

\\.\.\fpc-ec-mirro|App: Normal

\\.\.\fpc-ec-mirro|App_Source:

Actions:

<u>Acknowledge</u>

Acknowledge with comment

Step 3 - Data Distribution PI Notification Escalation

Allows notification to secondary response team when the notification goes unacknowledged by the first

Step 3 - Data Distribution Displays

Step 3 - Data Distribution Displays

Operating System and Hardware data

Summary

30

Data Acquisition

Data Analysis

Notification

Corrective Action

NERC-CIP

- NERC-CIP regulations require protection of critical infrastructure/assets
- Regulations require monitoring access of all critical systems

- > To comply with the regulations the architecture at critical sites had to be altered
- Change in architecture required 27 additional servers and workstations

NERC-CIP

- > PI Ping Interface
- > PI Syslog Interface
- > PI WinEventLog Interface
- > PI Notifications
- > Dashboards in PI WebParts

Benefits & Future Plans

Benefits

- Increased Hardware Availability
- > Advanced notification provides increase lead time
- > YTD Infrastructure Reliability 99.8%
- > Remote monitoring of system

Future Plans

- > Expansion to monitor remaining systems, other BU's
- Monitor Network
- Use AF or Module Database for displays
- Improve Monitoring System

Questions?

Thank you

© Copyright 2010 OSIsoft, LLC. 777 Davis St., San Leandro, CA 94577