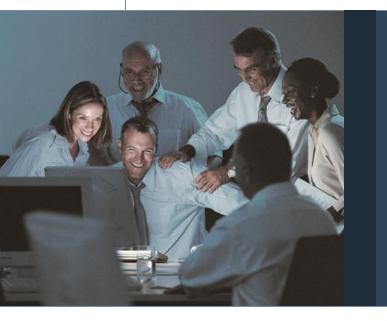

The PI System Infrastructure for Opportunity Delivery

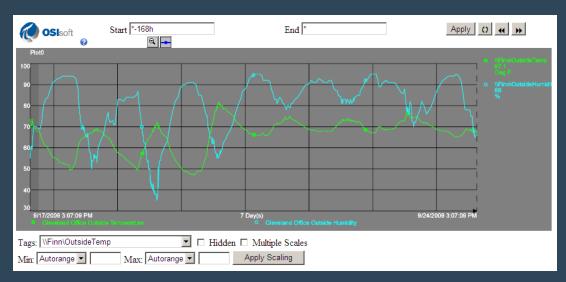
Regional Seminar Series

Middle East

November 2-7, 2010

Curt Hertler OSIsoft, LLC curt@osisoft.com

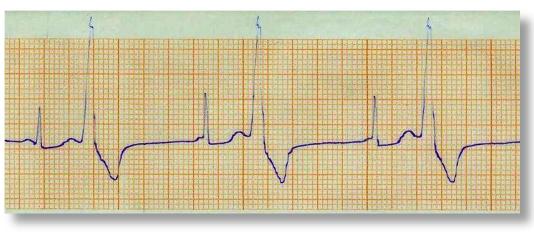



Empowering Business in Real Time.

© Copyright 2010, OSIsoft LLC All rights Reserved.

- Enabling Awareness: *The Value of Real-Time*
- Delivering Opportunity: The Need for Infrastructure
- Capturing Opportunity: *Performance Intelligence and Collaboration*
- Collaborating to Improve: *The Real-Time Infrastructure in Action*

Enabling Awareness *The Value of Real-Time*



Assessment of Condition

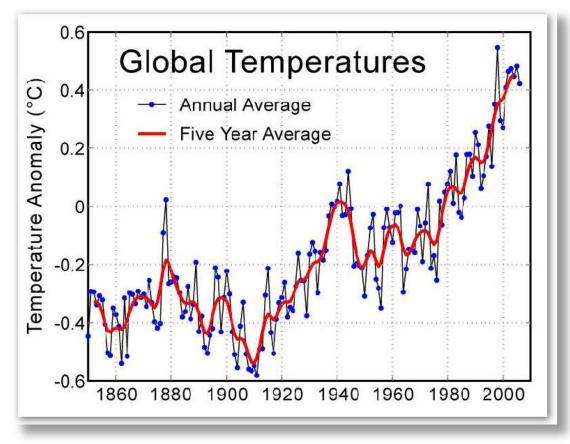
Forecast

Electrocardiogram

- Statement of "goodness"
- Actionable
- Critical

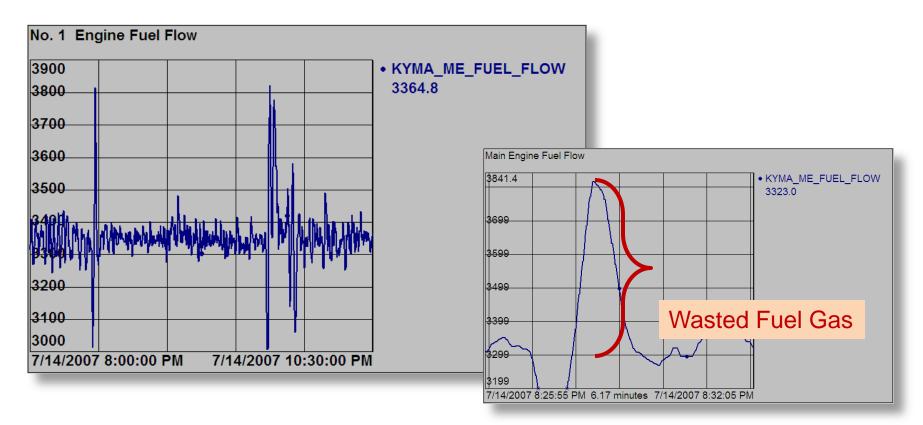
Creation of Opportunity

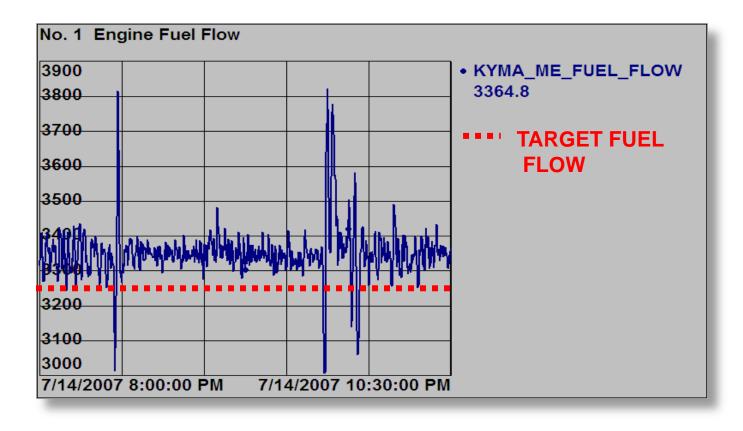
Online Financial Market Price Quotations



- Accessible
- Responsive
- Tactical

Evidence of Change


Climate Change Data


- Convincing
- Intuitive
- Impactful

Fundamental Principle

Fuel flow spikes discovered costing \$93,000 / year.

Another Opportunity - Continuous Improvement


The Challenge of Real Time

Capturing opportunities requires the right people.

Empowering Business in Real Time.

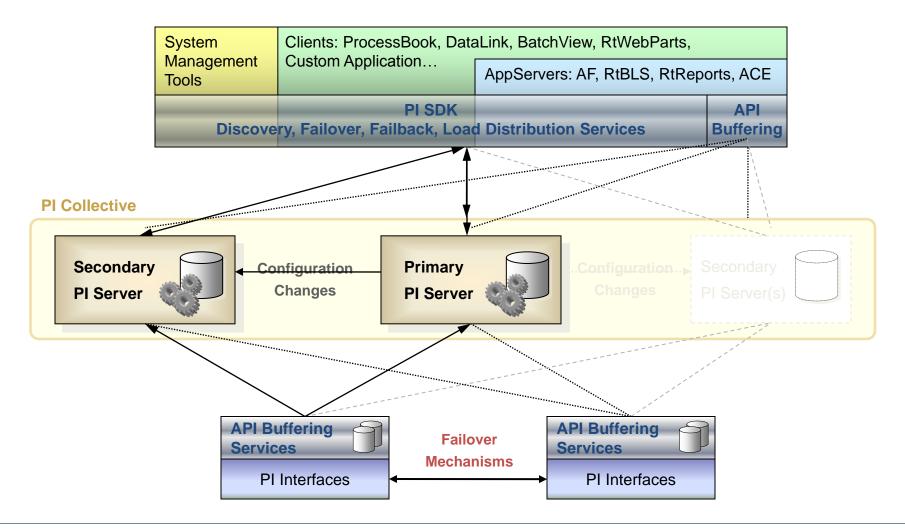
Delivering Opportunity *The Need for Infrastructure*

Real-Time Infrastructure Delivers Opportunities

Electrical Power

Communications

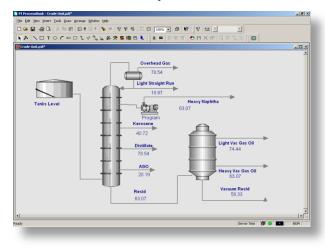
Transportation



Music

- Valuable delivers a recognized benefit
- Reliable and Secure always available, safe and trusted
- Accessible adaptable to innovation, easy to use
- **Contextual** organized to be effective, efficient, and extendable
- Sustainable must be able to last and adapt to change

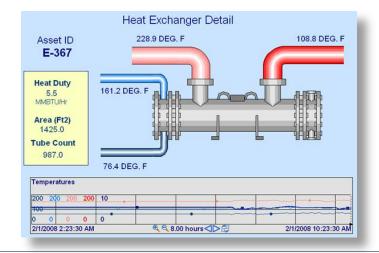
Full redundancy with Microsoft Security Model.



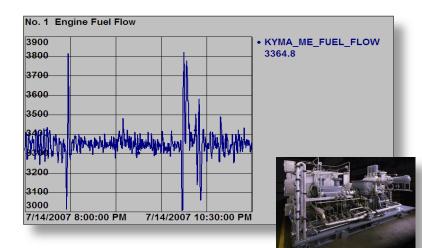
Accessible by Expected Standards

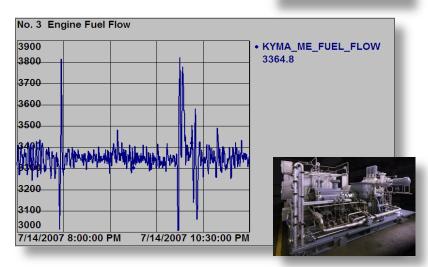
- Interfacing with over 400 different automation sources
- Compliance with Industry Standards OPC UA, PRODML, XML, Web Services
- Query-based Access, OLEDB
- Integration with Microsoft Office Tools Excel, VBA , .NET
- Integration with Microsoft and SAP Web Prortals
- Supports Application Development- OSIsoft vCampus

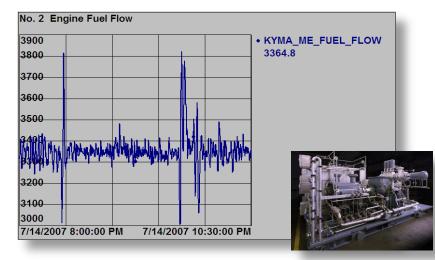
Accessible by Users

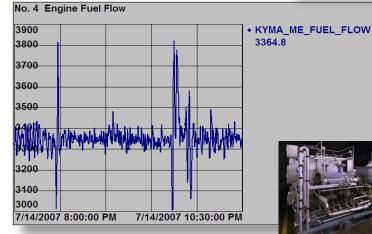

Process Context Graphics

Analytical Context Spreadsheets and Reports

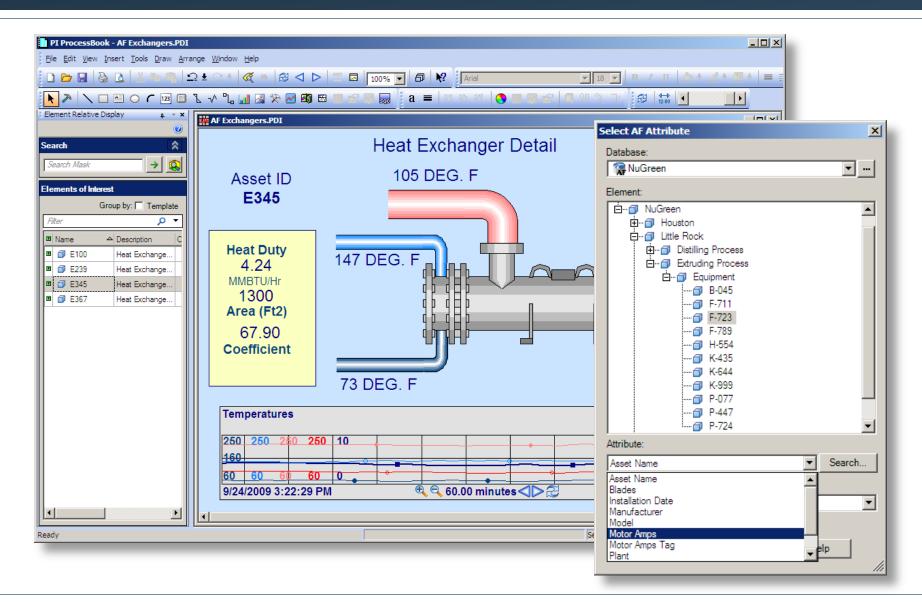

P23	×1 × 0 /	0.100	8.3	5.JII.	1.2	1 36 43	19.9	H	*· 4 ·			107	89.1	1.4.1	LINE :
		1.5	p	F.		5		41.1	4	.6	1	4		0	*
	- New York Concerning of		-			Barrowskie		-	Banana a	LAIRen	-	-	Margan Annotation	-	
	AND DESCRIPTION OF THE PERSON NAMES		11.00	-			2	-			100			-	
-	Territo For Product Code \$1008				-			-			- 10	-		-	
3840 7840	Transfer Contractory Contractory		24						ACTOR TOTAL	21.7871 1871	-	11.00	-	-	
			-		=			III		10,000	0.111 3.011	-	111	Ħ	
#						-	100		-	TANKS.		-	-		_
-	Tarials For Product Code #881		-	- 10	1000	10041	10.448 525	-			-		-	-	
-	And the Product Date Birts							-	-		-	-	-	-	
	ACTA MIL MILLION MARKAN PROPERTY AND ADDRESS				-		-		14	-		12	-		
	Constant L Martin Tarada Pau Paudane Conta Million	-100			-	-	1.0	-	-		-				
-	Tends Top Pandesi Code MITE				-			34.00	-	100	-		-	-	


Performance Context Process Calculations




© Copyright 2010, OSIsoft LLC All rights Reserved.

Contextual by Asset for Efficient Extension



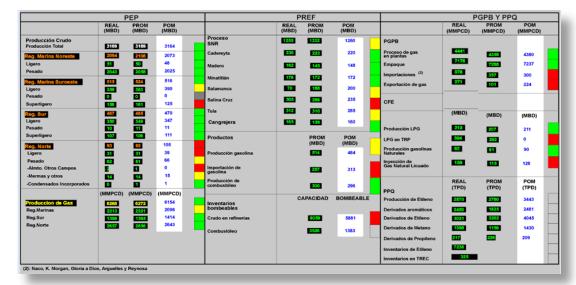
Contextual for Information Integration

Asset Context

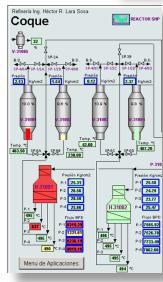
😣 Heat Exchangers -	PIS	ystem Explorer						
File Edit View	Go	Tools Help						
😭 Database 🛛 🛗 Query I	Date	🔹 🔇 Back 💿 🗟 Check In 🧉	🖓 🖌 🛃 🎁 New Elen	nent	🕶 ៉ New Attribute		🔎 Search 👻	
Elements	E3	45			_			1
🔒 Elements	Ger	neral Child Elements Attributes Po	rts Version	_				agen Methane Ethane Ethylene Ar
🗇 E100 🎯 E239						Group	by: 🔽 Category	115 137 38 < 185 164 51 < 399 320 109 <
🗇 E345	Sea	arch	Q	-	Name:	Heat Duty		1980 590 369 <1 2568 790 561 <1
i 🗊 E367		Name 4	Value	-	Description:			121 190 30 41 194 175 51 41 428 320 109 41
		Calculation			Configuration Item	р. Г		1305 1021 369 <1 2001 1332 450 <1 107 120 38 <1
		🗉 🗉 Heat Duty	4.1263327280799116		Categories	Calculation		194 175 51 <1 428 320 109 <1 1904 900 369 <1
			46.746717209469935		UOM:	, <none></none>		100 194 38 21
		Equipment Status	1		Value Type:	Double		_
		Duty Status	ОК		Value:	4.1263327280799116		I Data
		PI Data			Data Reference:			
		Cold Side Inlet Temp	74.6394577026367 °F	'	Data Nelerence.	Formula		
Elements		Cold Side Outlet Tem	152.069519042969 °F			Settings		
Provent Frames		Hot Side Inlet Tempe	215.985565185547 °F		A=Area;B=Coefficie	ent;C=LMTD;[(A * B * C) / 100000	0]	
🎒 Library		Hot Side Outlet Temp	107.607040405273 °F					
🚥 Unit of Measure		Specification						
🔞 МуРІ		🔳 🗐 Area	1300 ft2					
Notifications		Coefficient	67.9 ft2	-				
A Contacts				•				ed

Contextual for Users and Applications

Capturing Opportunity *Performance Intelligence and Collaboration*



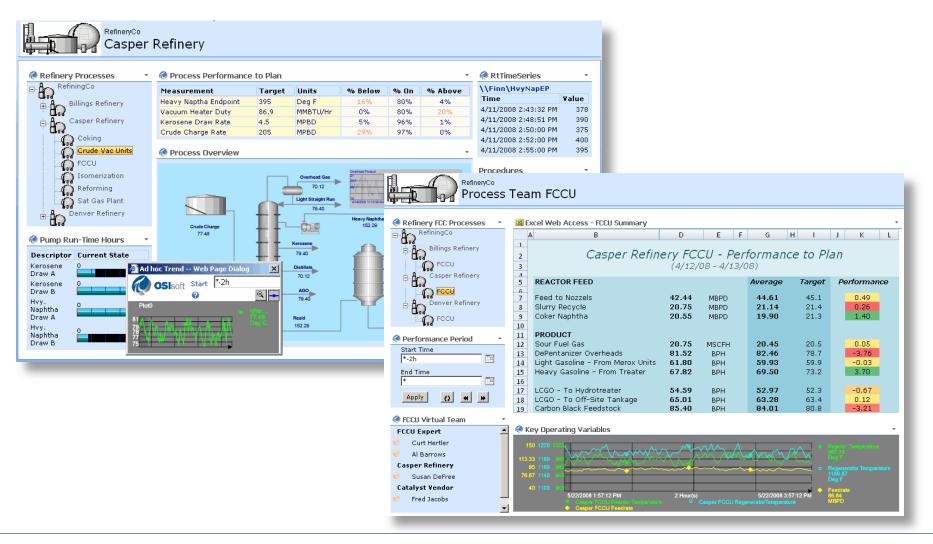
Operations Performance Scorecard


<u>}</u> ≡ <u>j</u> <u>∎</u> <u></u>												
		Housto	n			Little Ro	ock			Tucsor	n	
	To Date	Today	Target	Trend	To Date	Today	Target	Trend	To Date	Today	Target	Trend
Safety	0	0		\$	0	0		⇒	0	0		⇒
Environment	99.0	98.6		\$	99.0	98.7		\$	99.1	98.8	۲	\$
Energy Savings	0.4%	0.4%		\$	0.5%	0.7%		\$	1.5%	2.0%	۲	⇒
Quality	97.6	97.6	۲	\$	97.5	97.5		⇒	97.6	97.6	۲	⇒
Reliability	95.2	96.0		⇒	95.3	96.2		⇒	95.0	95.7		⇒

Collaboration Driven by Transparent Accountability

Accountability of Manufacturing Objectives

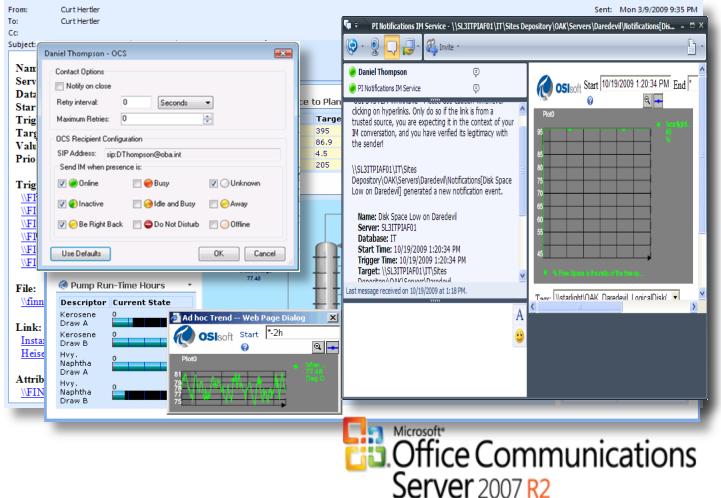
Articulation of Performance Rules

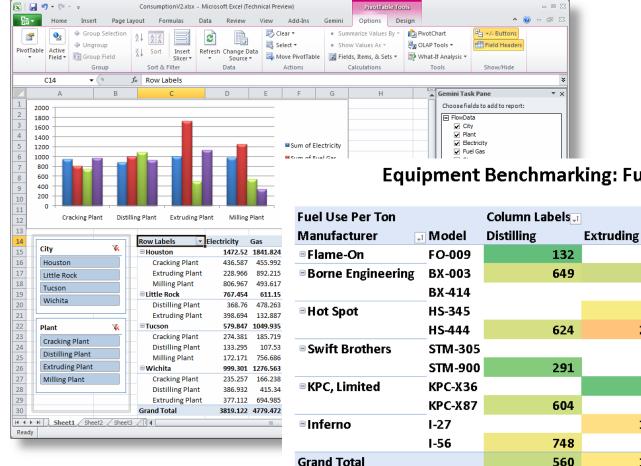


Benchmarking Performance Against Objectives

4	A	В	С	D	E	F	G	Н	1	J
1				C	riti	cal H	IX N	/lonitor	ing	
:					Water				Heat	
	Process		¥	Exchanger 💌		Skin Temp Deg F	CW Flow GPM	U-Value BTU/(hr/ft2/deg F)	Load MMBTU	Heat Flux BTU/hr/ft2
	LEP			E-163-A	3.70	77	2237	45.5	5.1	352.1
	REF			E-163-C	3.80	78	2298	48.0	5.8	401.1
	CRU			E-191-A	2.31	101	4360	62.8	36.6	2782.4
				E-191-B	3.08	80	4360	52.1	13.7	1027.2
	Tube To		X	E-256-A	2.46	97	1726	117.8	6.4	1082.2
	Tube Ty	pe	WK	E-256-B	2.47	89	1732	130.8	5.4	911.8
)	ST	U		E-256-C	2.46	84	1728	141.9	8.0	1362.3
			_	E-271	4.43	132	1930	153.3	40.9	9922.5
2				E-343	1.79	97	249	63.3	2.6	2443.0
3				E-38-A	1.81	105	3752	50.9	34.2	2378.9
1				E-38-B	1.95	82	3731	48.6	13.1	980.1
5				E-77-A	2.23	105	4204	61.8	36.4	2768.5
5				E-77-B	2.16	84	4246	57.1	19.0	1391.1
7				E-98-A	1.58	108	2986	47.3	29.3	2227.0
8				E-98-B	1.54	86	3013	45.3	15.6	1141.8

Organizational Presentation of Real-time Opportunities


PI WebParts 2010 for Microsoft SharePoint or SAP Enterprise Portal


Event-based Notification of Real-time Opportunities

PI Notifications (PI System 2010)

Encegirartichn with Vinksial Pelescientice Theformotogyn

Microsoft Excel 2010 with PowerPivot for Data Cube Analysis

Equipment Benchmarking: Fuel Gas Efficiency

				- -	
-56	748		405	6,393	
	560	1,056	1,405	2,000	
		© Copyrig	ht 2010, OSIsoft LL	_C All rights Reser	ved.

Cracking

598

796

190

1.455

2,699

Milling

322

1,684

2,422

873

440

1.271

2,902

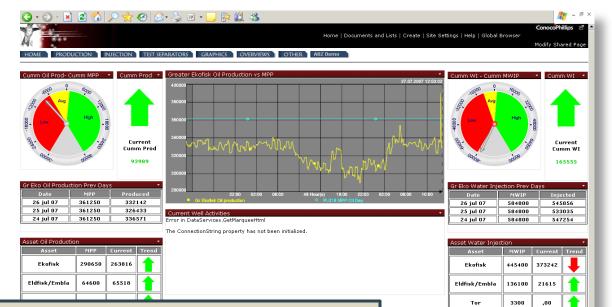
591

1,699

1,975

3,192

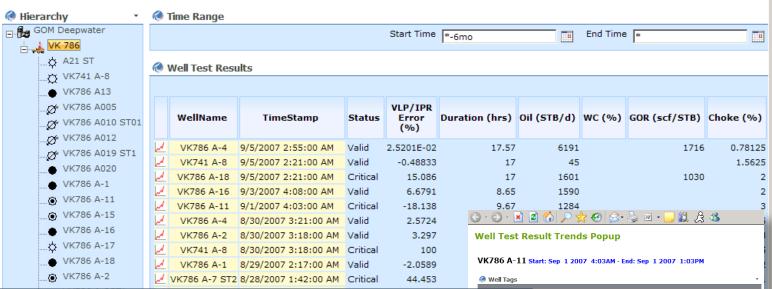
1,801


Collaborating to Improve *The Real-Time Infrastructure in Action*

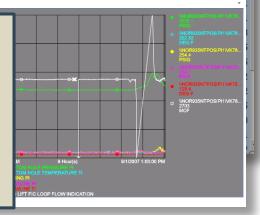
Enterprise Innovation Tools Environment for Integration and Collaboration

Well Performance Management and Alerting

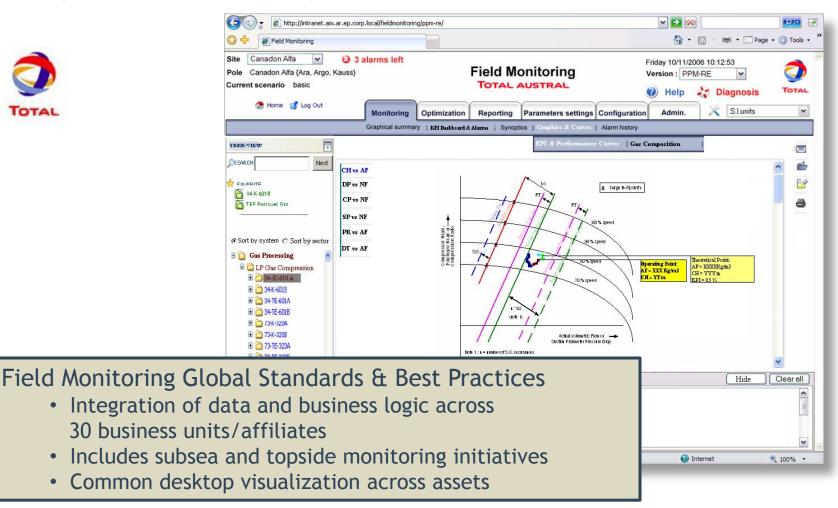
Real Time Onshore/Offshore Collaboration in North Sea


- Significant Reduction in transportation and maintenance costs
- Consistent Achievement of production and efficiency targets
- Consolidated views into production and maintenance data which can be shared with Houston headquarters

Enterprise Innovation Tools Application Integration and Collaboration

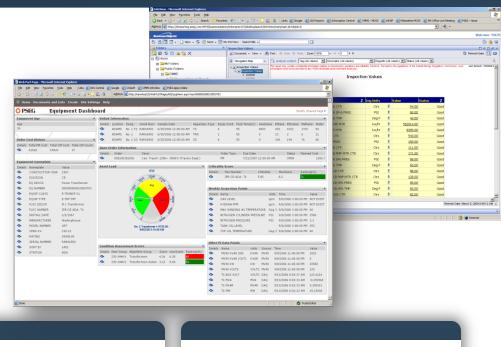

Well Test Validation

Well Tests


Standard Data Infrastructure for iFields Initiative

- Common nomenclature template for cross-asset collaboration
- Allows for cross-asset efficiencies such as compressor optimization calculations
- Allows Subject Matter Experts to collaborate in common visualization environment

Pump Performance Management


•

PSE&G: Condition Based Maintenance

"We get a detailed breakdown on equipment costs and man/hours to service that gives us important business benefits. Without the use of the PI System, it would have taken us several months to gather and analyze the information."

Angela Rothweiler, Principal Engineer

Customer Business Challenge

- Providing the highest reliability Power Distribution is requirement
- Minimize Maintenance Costs

 Implemented automatic data collection and notifications to SAP PM

Solution

 Set up standard business rules for condition based maintenance using PI - Analytics

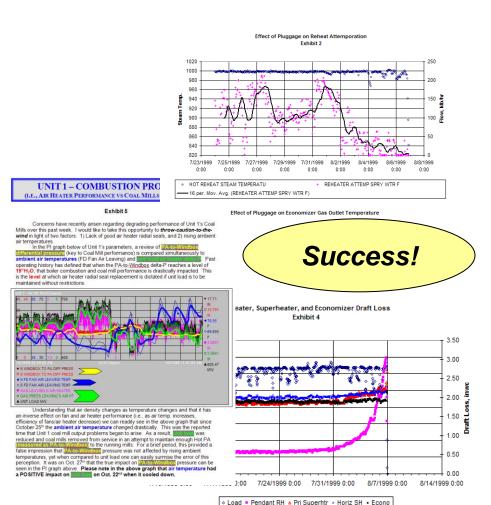
• Provided focused view into equipment using Portal.

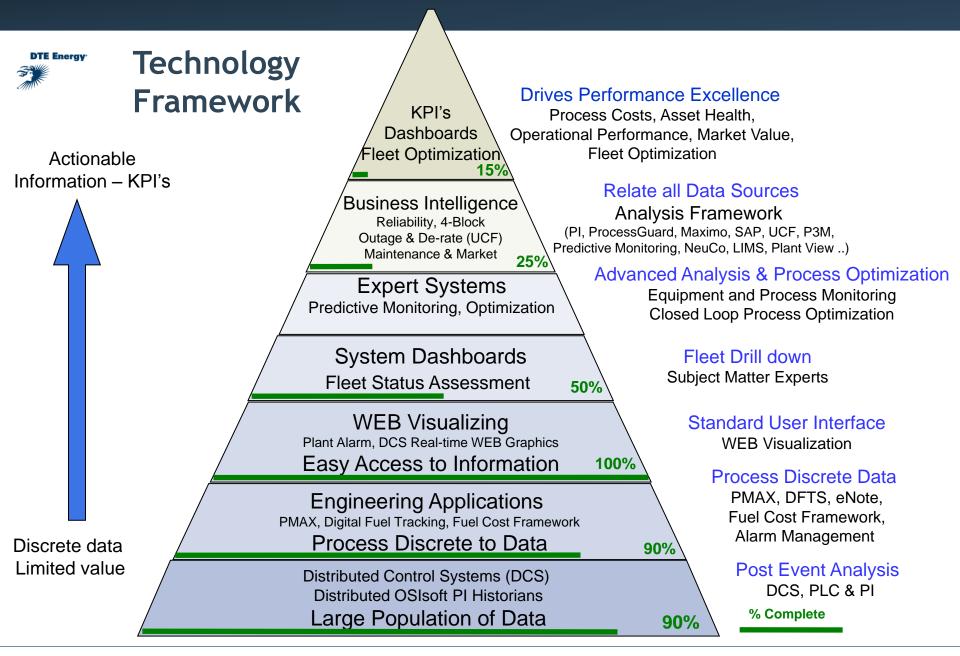
 Provides Financial access to data by Business Objects query Customer Results / Benefits

- Holds Reliability award for Mid Atlantic States for last 7 years
- Named most reliable Power Company in America
- Focused maintenance expenditures on needed targets

Fleet Optimization...... through Process Information

John C. Kapron, Technological Specialist Sumanth K. Makunur, Senior Engineer DTE Energy


OSIsoft 2007 Users Conference


DTE Energy

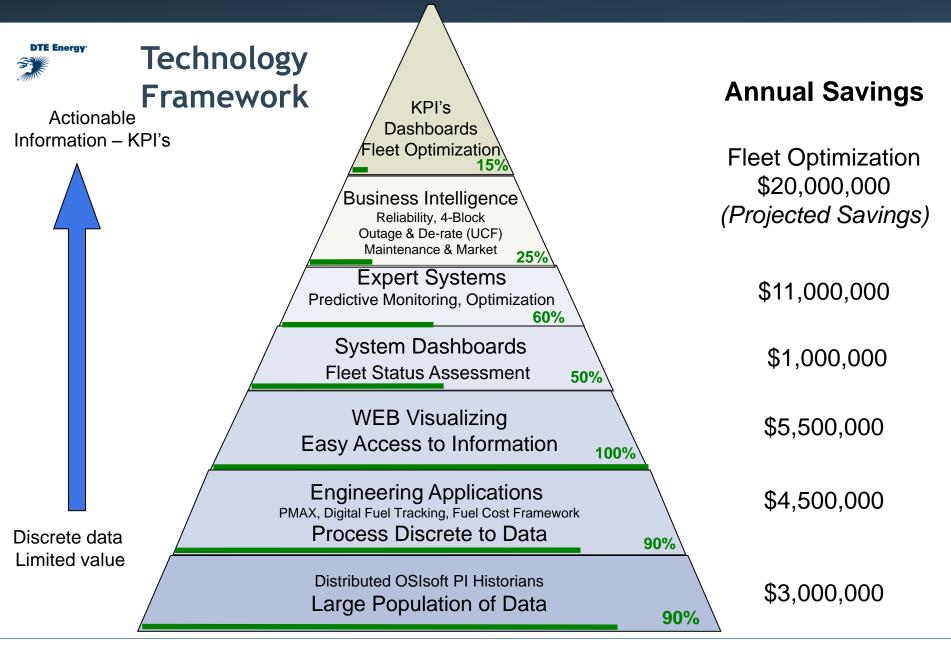
29

History of OSIsoft PI System in DTE Energy

- Pilot at Monroe PP in 1998
- Fossil Generation Fleet 1999
- GenOps EMS Ranger 2001
- SOC SCADA- 2002
- Fermi Nuclear– 2003
- DTE Subsidiaries 2007
- Enterprise Agreement 2007
- Continuous PI Expansion
 - Magnitude
 - Functionality

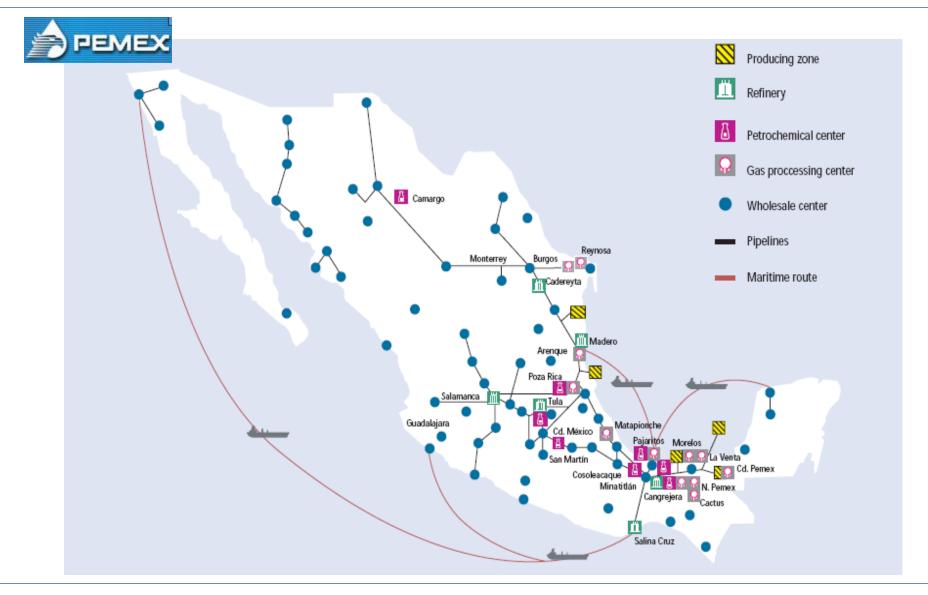
Performance Center – Mission

Equipment Performance Optimization of the Fossil Generation Portfolio through continuous "real time and **predictive** asset **condition monitoring**" to maximize the asset **market value**.


Performance Center – Vision

Fossil Generation's Fleet-wide "**Mission Control Center**" for continuous monitoring and optimization of plant equipment performance

- Located in Ann Arbor Michigan
- 7x24 hour operation (February 2006).
- Plant interface with Merchant Operation Center.
- Oversight of Outage and de-rate coordination.



Operational Excellence PEMEX

"PEMEX Pipeline Monitoring" MAURO ARENAS NOBLE OSIsoft Users Conference 2007

Operational Excellence Overview

Operational Excellence Solution. KPI's

	F	PEP			Р	REF			7178	GPB Y PP	Q	
	REAL (MBD)	PROM (MBD)	POM (MBD)		REAL (MBD)	PROM (MBD)	POM (MBD)		376	PROM	POM	
roducción Crudo	(MDD)	(1100)	(1000)	 Proceso	1255	1332	1260	PGPB	271	(MMPCD)	(MMPCD)	_
roducción Total	3169	3189	3164	SNR						-		_
eg. Marina Noreste	2094	2108	2073	Cadereyta	230	223	220	Proceso de gas en plantas		4359	4380	_
igero	51	50	48	Madero	162	145	148	Empaque	(MBD)	7288	7237	
esado	2043	2058	2025					Importaciones ⁽²⁾		357	300	
eg. Marina Surceste	515	524	516	Minatitlán	176	172	172	Exportación de gas	213	101	224	
igero	3.59	363	390	Salamanca	70	188	200	C.ponación de gas	394			
esado		•	0	Salina Cruz	305	296	235	CFE	92			
uperligero	156	161	125	Tula	312	310	285	0.2				
eg. Sur	467	465	470 347						109	(MBD)	(MBD)	
igero Iesado	350 10	349 11	34/ 11	Cangrejera	165	159	160	Producción LPG		_		
uperligero	107	106	111	Productos	_	PROM	POM		Calc Failed	207	211	_
<u> </u>	93	92	105	Productos		(MBD)	(MBD)	LPG en TRP	52783	292	0	
eg. Norte	31	31	39	Producción gasolina		514	484	Producción gasolinas Naturales	85	91	90	_
Pesado	62	61	66					Inyección de Gas Natural Licuado		115	128	
Almto. Otros Campos	5		0	Importación de gasolina		257	313	Gás Natural Licuado	131		120	_
Mermas y otros	14	14	15	Producción de					DEAL	PROM	0.014	
Condensados Incorporados	0	1	1	combustóleo		300	296		REAL (TPD)	(TPD)	POM (TPD)	
	(MMPCD)	(MMPCD)	(MMPCD)	 	-	APACIDAD	BOMBEABLE	PPQ				
roduccion de Gas	6268	6272	6154	Inventarios		AFAGIDAD	BOMBEABLE	Producción de Etileno	2870	2780	3443	
Reg.Marinas	2213	2221	2098	bombeables				Derivados aromáticos	2450	1825	2481	
leg.Sur	1398	1395	1414 2643	Crudo en refinerías		9059	5881	Derivados de Etileno	3021	3202	4045	
Reg.Norte	2657	2656	2043	Combustóleo		3526	1383	Derivados de Metano	1398	1156	1430	
								Derivados de Propileno	217	226	209	
								Inventarios de Etileno	7236			
								Inventarios en TREC	325			

Operational Excellence Next Steps

- Operating Coordination Center
 - To support logistics.
 - To coordinate events in case of out of normal operations.
 - To act as quick response center in security affairs.
 - A highly available solution required.

Thank you

Curt Hertler curt@osisoft.com

© Copyright 2010 OSIsoft, LLC 777 Davis St., Suite 250 San Leandro, CA 94577