

Regional Seminar Series New York, NY

The Use of the PI System for fleet-wide Monitoring and Optimization at NRG Energy

Mike Kanhai Manager, IT Plant Applications NRG Energy

November 5, 2010

Empowering Business in Real Time.

© Copyright 2010, OSIsoft LLC. All rights Reserved.

AGENDA

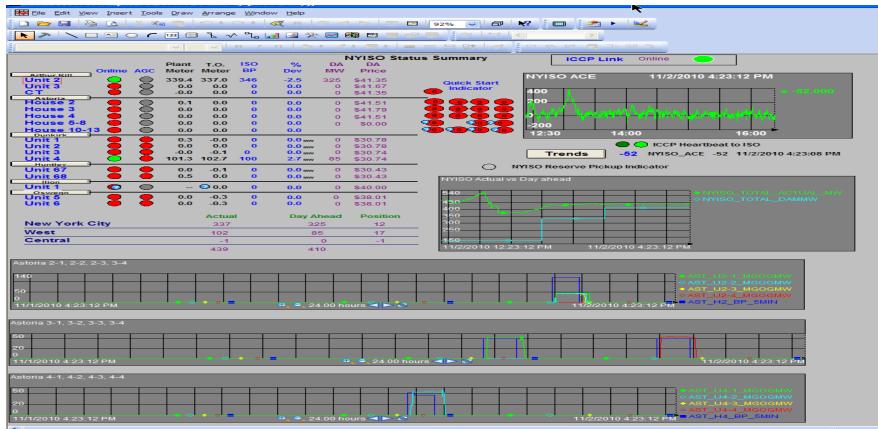
- Who is NRG Energy?
- PI System Architecture
- How PI System is used at the Plants
- Fleet-wide Monitoring and Reporting
- Benefits Realized to date
- Future Plans

NRG Energy

- Fortune 300 wholesale power generation company with HQ in Princeton, NJ & 5th largest in the Energy Industry.
- Owns and operates one of the industry's most diverse generation portfolios (includes <u>coal</u>, <u>natural gas</u>, <u>oil</u>, <u>nuclear</u>, <u>wind</u> and <u>solar</u> power) that provides ~24,000 Megawatts of electric generating capacity.
- In 2009, NRG purchased <u>Reliant Energy</u>, the second largest retail energy business in Texas, serving nearly 1.6 million business, industrial & residential customers.

- 17 Plants currently running a PI System
- PI-to-PI interfaces from Plants to HQ/Regional office
- Central PI Systems located in Texas and Corporate offices (NJ)
- PI Systems in Texas/LaGEN Emergency Management System (EMS)
- PI WebParts provides fleet-wide dashboards/reports

The use of PI System at Corporate/Regional & Plants



The versatility of PI System allows NRG to utilize this platform to deliver viable solutions that support various aspects of our business.

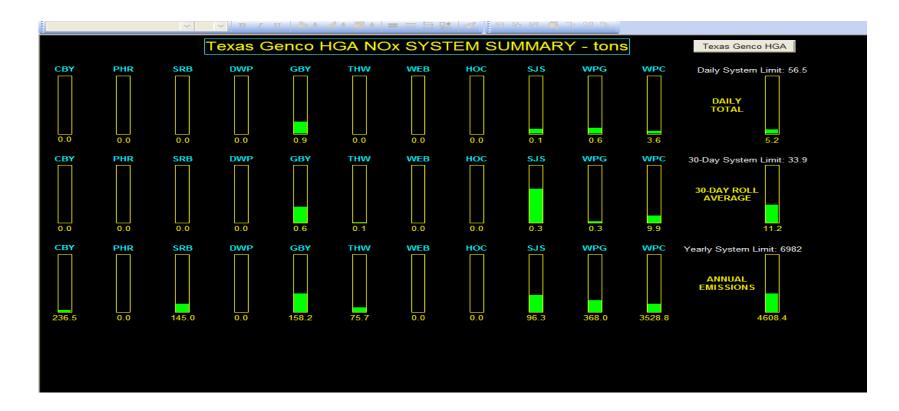
- Real-Time Trading (Princeton, NJ and Texas)
- Settlements Audit of ISOs
- Improving Overall Plant and Fleet Performance
- Monitoring NOx Emmissions
- Troubleshooting issues at Plants (unit trips, de-ratings, etc...)

 Real-Time Trading (Princeton and Texas) - when PI System was implemented at NRG it was initially used to by the real-time trading group to monitor how are plants were being dispatched



 Settlement Audits (ISOs) - NRG uses datalink to audit the megawatt generation the ISOs document for NRG

B) File	Edit View Insert Forma	at Tools D	ata Window PI	Help PI-SMT Ad	lobe PDF				7			
									6			
				- • 😸 Z • ½+	X4 1005			• 10 • B 2 <u>0</u> =	= = 2	∃ \$%, * 38 \$ % ∰ ∰ ⊞.		
5 🔁 🛛	. 💷 .											
A3		_	-	-	_	_	-		-			
	А	В	С	D	E	F	G	Н	1	J	к	L
-												
		CBY 1	CBY 2	CBY 3	ST1	ST2	ST3	ST4		LMS 1	LMS 2	LMS ST1
			CBY CBYU2 M	CBY CBYU3 MW	CBY CBYST1 N	CBY CBYST2 M	CBY CBYST	CBY_CBYST4_MW_EBU		LEG LEGU1 MW EPS	LEG_LEGU2_MW_EBU	
7	13-Oct-10 23:00:00	- 0			0.026655275	1.262156107	- 0			-807.9293671	-48.12072908	0.0328
8	13-Oct-10 23:15:00	0				1.262614295				-797.2001501		
9	13-Oct-10 23:30:00	0				1.263072483	0			-761.3257789		
00	13-Oct-10 23:45:00	0	0 0	0	0.026779147	1.263530672	0	0.158784923		-737.8580911	-46.18828694	0.0328
01												
03		0	0	C	0.595627947	36.6846448	0	3.895439486		-17496.93272	-1116.653221	0.7875
)4			0	L L	0.595627947	30.0040440	U	3.095439400	·	-17496.93272	-1116.653221	0.7675
05												
06												
07												
08		Total Gen	Site Net						1	Total Gen	Site Net	
09		0								18613.58595	18551.7783	
10												
11		CBY-1	CBY-2	CBY-3						LMS-1	LMS-2	
12	EPS Settlement	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					17438.833		
	ence from AuxAB	#DIV/0!	#DIV/0!	#DIV/0!						53.81631384		
14 Avg p	ber hour	#DIV/0!	#DIV/0!	#DIV/0!						2.24234641		
15				nce from						17492.64931	1/8/8.52246	Unit Net from Aux A
	MWH from EPS AV data 0.00	Plant	EPS CV 0.00	Units Aux AB 0.00						neg = Unit net from Aux AB is low		
17	18551.78	CBY LMS	-16847.92	-16819.39								
10	28470.75	STP	32.56	- 166 19.35	+ = Aux AB net f	MM in low						
20	42749.32	WAP	39.06	203.97		100 13 1000						
21	1801.95	SJS	0.71	-12.46								
21 22	0.00	SRB	0.00	0.00								
23	319.26	GBY	-1.54	-14.96	6							
24	2734.99	THW	1361.15	-28.55	5							
25	94628.05		110044.03		Total MWH							
26	-15415.98			AV Difference from								
27	-16307.98	-17.23%	-679.4990907	AV Difference from	Units Aux AB							
28												
29 30												
31												
32												
33												
34												
35									1			
36												
37												
38												
39												
40												
41 42												
42 43			1						-			
43												
45												
45 46 47 48									-			
47												
48												
49												
									1	,		



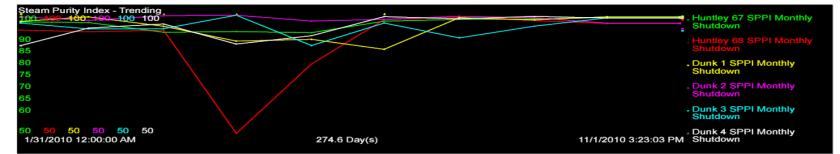
 Improving Plant Performance - utilize PI System to monitor the startup of our units, helps operators to identify issues during startup procedures

 Monitoring NOx Emissions - In the Texas ERCOT market we have to manage our NOx emissions. We use PI System to ensure we are within allocated limits for the region

Future Plans for PI System at NRG

- Improve fleet-wide reporting
- Condition-based Maintenance (fleet-wide)
- Improving Plant Performance (fleet-wide)
- Operator Box initiative
- NERC monitoring (Plant Level)

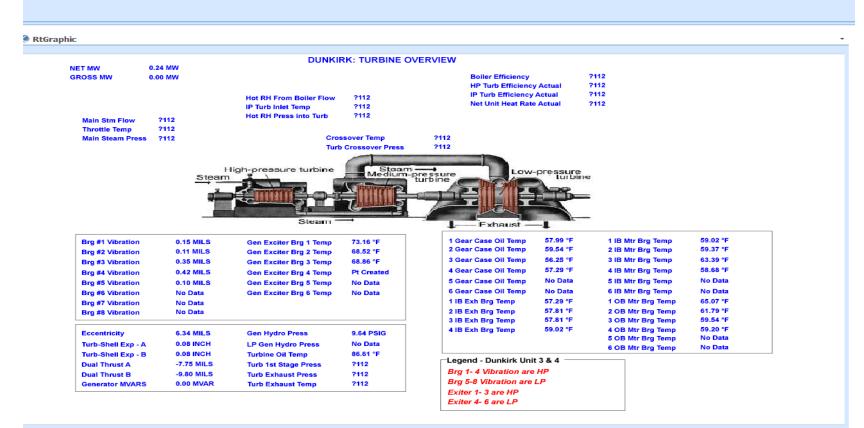
Steam Purity Report


nt Operations > Steam Purity > Water Chemistry Report Monthly

Water Chemistry Report Monthly

< RtGraphic

R


Steam Purity Index Table - Month Ending

Plant	Unit	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Huntley	Huntley 67	97.17	96.91	92.79	93.08	92.61	97.48	98.23	98.42	99.04			
Huntley	Huntley 68	93.71	93.00	93.62	50.00	79.36	98.18	99.12	97.74	96.49			
Dunkirk	Dunkirk 1	97.35	99.30	95.33	89.04	89.80	85.57	98.96	98.02	99.35			
Dunkirk	Dunkirk 2	100.00	99.29	97.81	100.00	97.53	98.24	99.57	98.95	96.62			
Dunkirk	Dunkirk 3	96.69	94.20	94.29	100.00	87.17	96.69	90.41	95.38	98.87			
Dunkirk	Dunkirk 4	87.14	94.56	96.30	87.79	91.32	99.40	98.48	99.49	98.82			

Plant Operation & Maintenance Displays

DunkirkTurbine

© Copyright 2010, OSIsoft LLC. All rights Reserved.

Thank you

© Copyright 2010 OSIsoft, LLC. 777 Davis St., Suite 250 San Leandro, CA 94577