

Regional Seminar Series

Warszawa, Poland

The Value of Real-time Infrastructure

7 October 2010

Zsolt A. Oros Sales Account Manager, CEE OSIsoft Europe Gmbh.

Topics of Discussion

- Introduction
- What is the PI System and its Impact on your Business?
 - The reason for a Real-time Infrastructure
 - How does it fit into your exisiting infrastructure?
 - System Overview
 - Benefits & Value Creation Mechanism
- The Value of PI System in Industries
 - Use Cases & Examples
- Summary

Great People - Significant Achievements

"We are rewarded when we deliver superior value. This means delivering a platform on which our customers can continuously improve their business performance."

Dr. J. Patrick Kennedy, CEO & Founder

OSIsoft LLC. celebrates the 30th
Anniversary of foundation of
the Company !!!

Our footprint in Central Eastern Europe Accepted by Local & Global Players

What is the PI System?

Real-time Infrastructure for the Enterprise

Enterprise Infrastructure for management of real-time data and events

Continuous Monitoring

Performance - Availability - Security

Real-time Decision Making

Valuable business decisions based on actionable, Real-time Information

Real-time Communication

Between ISLANDs of data and information

Collaboration

Everybody works with the same Information – Rules – Tools

Adoption

To Changes in

- Business / Organization / Process
- Technology

From Local to Global

Backbone for Integration

Plant to Business (P2B) Integration

Continuous Improvement

Across the whole Enterprise

The reason for a Real-time Infrastructure Business Decision Cycle - Value Creation Process

The reason for a Real-time Infrastructure Faster and Better Decisions

Information is as good as the decision made with it !!!

Information must be TIMELY, MEANINGFUL & ACTIONABLE

There are two very important aspects to it:

1. Reduced Time to Decision

- » Faster time to decision ⇒
- » Reduced Cycle Time ⇒
- » Faster time to market ⇒
- » HIGHER REVENUE of products

2. Improved Decision Quality

- » Reduced Decision Uncertainty ⇒
- » Better quality and more products
- » LOWER COST of production

The TIME Aspect How to Improve?

Ultimately, Value can be obtained from

- ReducingTime to Decision by <u>Improving Situational Awareness</u>
- Situational Awareness can be improved by having <u>data available in real-time</u> in their original resolution

The TIME Aspect Improving Situational Awareness

The TIME Aspect Improving Situational Awareness

The QUALITY Aspect

Reducing Uncertainty by Turning DATA into KNOWLEDGE

The QUALITY Aspect

Reducing Uncertainty by Turning DATA into KNOWLEDGE

Why it is Important? What is the basis of your decision?

The place for Real-time Infrastructure: Foundation for Real-time Decision Support

How does it fit into your existing Infrastructure? Typical Situation - Hundreds of Islands

ENTERPRISE-WIDE VISIBILITY

Level 0

Process

TRANSMITTERS ACTUATORS

MOTORS

ENTERPRISE-WIDE VISIBILITY

How does it fit into your existing Infrastructure? Integration of Islands

How does it fit into your existing Infrastructure? Data foundation for all Business Processes

Collaboration

Everyone works with the same Information - Rules - Tools

How it is Structured? Fundamental Layers of PI System

How it is Structured?

PI System Overview

The OSIsoft PI System is the highly scalable and secure real-time and event infrastructure that connects people with the right operational and manufacturing information at the right time to analyze, collaborate, and act.

CONNECT- Interfaces

Connect

Collect data from hundreds of sources

Real-time

Relational

Transactional

Custom

Web Services

AMI

IT

Connect to over 400 data systems and sources

Measures and aggregates a broad range of data types

MY SUPPORT | PRODUCTS | DOWNLOAD CENTER | KNOWLEDGE CENTER | CONTACT US

PI Interfaces

PRODUCTS

PI Servers Client Products Layered Products

OPC Interfaces

COM Connectors

System Management

RLINK

ECHO

PI Protocol Converter OSIsoft MDUS

Prerequisite Kits

RELATED PRODUCTS

COM Connectors

PI Interfaces Search

siemens

Search List All

• Standard • Maintenance • 3rd Party • Non-Standard

Name	Platform	Current Version	Shipping Version	Part#	APS Status
Siemens RXS4 Meter	NTI	1.0.0.1	1.0.0.1	PI-IN-SI-RXS4- NT	
Siemens S5 PLC				See Comments	
Siemens S7 PLC				See Comments	
Siemens S7-200 PLC's				See Comments	
Siemens SIMATIC Batch Interface	NTI	1.0.1.0		PI-IN-SI-SBAT- NTI	
Siemens Simatic Net (TI-505, S5)	NTI	1.4.2.1	1.4.2.1	PI-IN-SI- SIMAT-NTI	
Siemens Simatic Net S7	NTI	1.0.0	1.0.0	PI-IN-SI-S7- NTI	
Siemens SINAUT				See Comments	

MANAGE - Server

Gather and archive large volumes of data. Scale to meet your business needs.

PI Server

System Management

System Access

PI Asset Ffamework

Reliably gather, archive and serve large volumes of data Designed for time series and non time series data

MANAGE - Asset Framework

Gather and archive large volumes of data. Scale to meet your business needs.

Contextualize, structurize and enrich data

Represents the entire Asset Structure of the Plant

Shaping your data by:

- Defining types of assets
 Schema how to attribute Elements
- >>> <u>Templates</u>
- 2. Association to a "real" asset
 Created from Template
- >>> Elements

- 3. Describing the "real" asset

 having Units Of Measurements (UOM)

 can come via data references from everywhere
- 4. Physical/logical asset structure
- Hierarchy

5. Assets connectivity

Model: Collections of connected elements

• Condensor
• Heatexchanger
• Column
• Valve
• Pipe
• Pump
• Column661
• Condensor661
• P661_1
• P661_2
• HeatExchanger661
• Valve661 1

• Valve661 2

OpeningGrade InspectionResult

LastInspection

PI Point: \\MOBILEVBC\Valve661_1. OpeningGrade

Table Lookup: SELECT InspectionResult FROM ...

Table Lookup: SELECT LastInspection FROM ...

ANALYZE - Analytical Capabilities

Access real-time or historical role-based data for the entire enterprise at any time.

Convert real-time data into actionable information

Measure and improve business performance

- Equations, calculations, aggregations, filters, business rules
- CEP (Complex Event Processing) & Post processing
- Reports, Notifications and Alerts
- Monitor business & operational performance in real time

VISUALIZE - Visualization Capabilities

Gain a comprehensive view of operational information

Empower informed decisions and drive business success

View data, identify problems, and take corrective action with familiar, easy-to-use graphical tools.

Provide Account state of the area of the a

Typical System Architecture at Local Level Infrastructure for a Plant or Site

Moving from Local to Global Real-time Infrastructure for the Enterprise

Value Creation Mechanism of PI System Value Now, Value Overtime

Example: Heat Exchanger Performance Monitoring CALCULATION ALGORYTHM

Heat Exchanger Key Performance Indicator:

Overall heat transfer coefficient

$$U = \frac{Q}{A \times Corrected \ LMTD}$$

RULE: IF the heat transfer coefficient is decreasing, THEN the **Heat Exchanger FOULING**!!! Cleaining is required!

Calculation Steps:

- 1. Heat Duty, $Q = q_s + q_l$ $q_s = Wx C_{ph} x(T_i - T_o)/1000/3600$ $q_s = w x C_{pc} x (t_o - t_i)/1000/3600$
- Hot Fluid Pressure Drop, ΔP_h = P_i − P_o
- Cold fluid pressure drop, ΔP_c = p_i- p_o
- Temperature range hot fluid, ΔT = T_i- T_o
- 5. Temperature range cold fluid, $\Delta t = t_o t_i$
- 6. Capacity ratio, $R = W \times C_{Ph} / W \times C_{pc}$ (or) $(T_i T_o) / (t_o t_i)$
- 7. Effectiveness, $S = (t_o t_i) / (T_i t_i)$
- 8. LMTD

 $\begin{array}{l} LMTD \ Counter \ current \ Flow = \left((T_i \hbox{-} t_o) - (T_o \hbox{-} t_i) \right) / \ln \left((T_i \hbox{-} t_o) / (T_o \hbox{-} t_i) \right) \\ LMTD \ Co \ current \ Flow = \left((T_i \hbox{-} t_i) - (T_o \hbox{-} t_o) \right) / \ln \left((T_i \hbox{-} t_i) / (T_o \hbox{-} t_o) \right) \\ Correction \ factor \ \ for \ LMTD \ to \ account \ for \ Cross \ flow \end{array}$

$$F = \frac{(R+1)^{1/2} \times \ln ((1-SR)/(1-S))}{(1-R) \times \ln \left\{ \frac{2-S(R+1-(R+1)^{1/2})}{2-S(R+1+(R+1)^{1/2})} \right\}}$$

Corrected LMTD = F x LMTD

Example: Heat Exchanger Performance Monitoring INFORMATION FLOW

CONNECT Data Sources

COLLECT & ARCHIVE

Heat Exchanger Data

CALCULATE Performance

VISUALIZE & NOTIFY The Right People

CORRECTIVE ACTION

Maintenance

prioritization

Heat Exchanger

Cleaning

Changing

task

Real-time data:

Control System

DCS PLC **SCADA**

Parameters	Units
Hot fluid flow,W	kg/h
Cold fluid flow,w	kg/h
Hot fluid Temp, T	⁰ С
Cold fluid Temp,t	°C
Hot fluid Pressure,P	bar g
Cold fluid Pressure, p	bar g

Offline data:

Lab System LIMS

Databases

HANDBOOK ASSAY DB SIMULATION PROPERTIES DB

Parameters	Units
Hot fluid density, ρ_h	kg/m³
Cold fluid density, ρ_c	kg/m³
Hot fluid Viscosity, µh	MpaS*
Cold fluid Viscosity, µc	MPaS
Hot fluid Thermal	kW/(m. K)
Conductivity, kh	
Cold fluid Thermal	kW/(m. K)
Conductivity, kc	
Hot fluid specific heat	kJ/(kg. K)
Capacity, Cph	
Cold fluid specific heat	kJ/(kg. K)
Capacity, Cpc	
	Hot fluid density, ρ_h Cold fluid density, ρ_c Hot fluid Viscosity, μ_h Cold fluid Viscosity, μ_c Hot fluid Thermal Conductivity, k_h Cold fluid Thermal Conductivity, k_c Hot fluid specific heat Capacity, C_{ph} Cold fluid specific heat

CALCULATION ALGORYTHM

Heat Transfer Coefficient; $(U = Q / A \times LMTD)$

RULE IF "U" IS BELOW A

CERTAIN LIMIT, THEN HEAT **EXCHANGER**

FOULING

Operating Mode

Re-planning / re-scheduling

- Connect all relevant data sources
- Collect & Archive Data
- Put the Data into Context
- Asset Centric Information
- Rigorous Calculation Capabilities
- Archive results
- Trending capabilities
- Visualisation capabilities
- Implementing rules
- Notify O&M Personnel

Example: Heat Exchanger Performance Monitoring STEP 1: CONNECT RELEVANT DATA SOURCES

Example: Heat Exchanger Performance Monitoring STEP 2: COLLECT AND ARCIVE EQUIPMENT DATA (Tag-based)

Example: Heat Exchanger Performance Monitoring STEP 3: ASSIGN CONTEXT (Asset-based)

Example: Heat Exchanger Performance Monitoring STEP 4: CALCULATE PERFORMANCE MEASURES

Example: Heat Exchanger Performance Monitoring STEP 5: VISUALIZE EQUIPMENT PERFORMANCE REAL-TIME

Example: Heat Exchanger Performance Monitoring STEP 6: NOTIFY THE RIGHT PEOPLE AT THE RIGHT TIME

Example: Heat Exchanger Performance Monitoring STEP 7: VISUALIZE OVERALL PERFORMANCE REAL-TIME

Example: Heat Exchanger Performance Monitoring STEP 8: REPORT ANOMALIES IN THE RIGHT FORMAT

Infrastructure Benefits

Typical Benefit Areas of a Real-time Infrastructure:

Increased production/decreased downtime

» The PI System infrastructure can reduce downtime as a result of improved situational awareness and decision making.

Reduced Energy

» The use of PI System infrastructure would result a reduction in energy usage by improved analytics and visualization of operational data

» Reduced loss and downgrade from improved information and decision support systems across the value chain

Reduced Capital costs

» PI can provide improved operational information resulting in improved understanding and associated reduction in cap ex costs

Reduced Maintenance costs

» Reduced maintenance costs due to improved equipment/asset awareness, predictive analytic/notification, and ability to perform incident investigation.

Reduced Chemical/additive costs

PI System in the Industries Use Cases & Examples

BP Exploration & Production

Real-time Data - Usage in Different Contexts

Conoco-Phillips E&P - North Sea

Detroit Energy - Generation Optimization of thermal performance while reducing emission

Vattenfal Heat Poland

PI Process Book enabling graphical visualization of techological process

PEMEX, Gasatacama Monitoring & Diagnostics Center

California ISO: Governor's visit

Summary

- We are focusing on ONE product, the PI System since ~ 30 years
- Our system is widely accepted globally and we have a very good reputation in the marketplace in all major industries
- The PI System
 - Creates an integration platform to all islands
 - Connects your plant floor data into the business process
 - Spans your supply
 - Enables collaboration and continuous improvement
 - Provides you with the capability of making profitable decisons real-time based on actionable information
- We understand the needs of all the major processing and manufacturing industries, so we are trusted by many prestigious Cement companies
- We provide 24/7 Technical Support

Thank you

© Copyright 2010 OSIsoft, LLC 777 Davis St., Suite 250 San Leandro, CA 94577