
Prepared by

Craig Taylor and Don DeBerry

Presentation to

2002 OSIsoft T&D Users Conference

Using PI-ACE to Calculate 

Regulation Performance 

Metrics



Agenda

Don Covering

 Description of Regulation 

 Regulation Performance Metrics

Craig Covering

 Calculation Requirements

 Server and Module Database Structure

 Calculation Code Layout

 Issues and Solutions



What is Regulation?

Regulation – Generators equipped with Automatic 

Generation Control (AGC) that can change output 

quickly to accommodate the fluctuations in system 

supply and demand. 

60Hz

Load Generation



What is Regulation?

 Ancillary Service – Expensive

 Reserved Capacity

 Generators Require Certification

 Telemetry Requirements
 Verify AGC Status

 Two Way Communication

 Generators Controlled by CAISO EMS

 Typically 5-20 Units (CAISO system)



Why are Performance Metrics Needed?

 Improve the Quality of Regulation Service
 Rank Regulation Performance 

 Share information with Generator Owners

 Eventually Penalize Poor Performers

 Reduce Costs
 Reduce the Amount of Regulation Required 

 Free up Capacity for Other Energy Markets

 Improve Reliability
 Better Response to System Emergencies

 NERC Control Performance Standards



Regulation – System Perspective

Hour Ahead Load Forecast

Day Ahead Load Forecast

Incremental Energy

Decremental Energy

One Hour Load Profile



Regulation – System Perspective

One Hour Load Profile

Upward Regulation

Downward Regulation



Regulation – Generator Parameters

Actual Unit Output

Preferred Operating Point

Operating Range

High Limit

Low Limit



Regulation – Generator Parameters

Regulating Range

Regulation Bid Down

Regulation Bid Up



Regulation – Unit Control

Set Point



Expected Generation Calculation

Expected Generation

Bid Ramp Rate

Expected Generation Calculated with PI-ACE



Performance Metric Calculation

Standard Control Error

Expected Range

Calculated with PI-ACE

RMS  for 1 Hr and for 10 Min



Test Performance Metric Formulas

1

)(
1

2

−

−

=


=

N

ExpectedActual

Error

N

j

jj

1

)(
1

2

−

−

=


=

N

ExpectedExpected

Range

N

j

Minj

Performance Metric = 100*1 






 −
−

Range

biasError



80.00

85.00

90.00

95.00

100.00

105.00

110.00

115.00

120.00

2
:0

0
 P

M

2
:0

2
 P

M

2
:0

4
 P

M

2
:0

6
 P

M

2
:0

8
 P

M

2
:1

0
 P

M

2
:1

2
 P

M

2
:1

4
 P

M

2
:1

6
 P

M

2
:1

8
 P

M

2
:2

0
 P

M

2
:2

2
 P

M

2
:2

4
 P

M

2
:2

6
 P

M

2
:2

8
 P

M

2
:3

0
 P

M

2
:3

2
 P

M

2
:3

4
 P

M

2
:3

6
 P

M

2
:3

8
 P

M

2
:4

0
 P

M

2
:4

2
 P

M

2
:4

4
 P

M

2
:4

6
 P

M

2
:4

8
 P

M

2
:5

0
 P

M

2
:5

2
 P

M

2
:5

4
 P

M

2
:5

6
 P

M

2
:5

8
 P

M

3
:0

0
 P

M

HGHRG

LOWRG

Effective POP

Actual Generation

Calculated Expected Gen

Standard Control Error = 1.19 

Expected Range = 14.12 

Performance Metric = 98.65% 

Bias = 1

Example - Good Performance

Performance Metric = 100*1 






 −
−

Range

biasError



Example - Moderate Performance

Performance Metric =

210.00

215.00

220.00

225.00

230.00

235.00

240.00

3
:0

0
 P

M

3
:0

2
 P

M

3
:0

4
 P

M

3
:0

6
 P

M

3
:0

8
 P

M

3
:1

0
 P

M

3
:1

2
 P

M

3
:1

4
 P

M

3
:1

6
 P

M

3
:1

8
 P

M

3
:2

0
 P

M

3
:2

2
 P

M

3
:2

4
 P

M

3
:2

6
 P

M

3
:2

8
 P

M

3
:3

0
 P

M

3
:3

2
 P

M

3
:3

4
 P

M

3
:3

6
 P

M

3
:3

8
 P

M

3
:4

0
 P

M

3
:4

2
 P

M

3
:4

4
 P

M

3
:4

6
 P

M

3
:4

8
 P

M

3
:5

0
 P

M

3
:5

2
 P

M

3
:5

4
 P

M

3
:5

6
 P

M

3
:5

8
 P

M

4
:0

0
 P

M

HGHRG

LOWRG

Effective POP

Actual Generation

Calculated Expected Gen

Standard Control Error = 1.70 

Expected Range = 8.69 

Performance Metric = 91.95% 

Bias = 1

100*1 






 −
−

Range

biasError



200.00

210.00

220.00

230.00

240.00

250.00

260.00

8
:0

0
 P

M

8
:0

2
 P

M

8
:0

4
 P

M

8
:0

6
 P

M

8
:0

8
 P

M

8
:1

0
 P

M

8
:1

2
 P

M

8
:1

4
 P

M

8
:1

6
 P

M

8
:1

8
 P

M

8
:2

0
 P

M

8
:2

2
 P

M

8
:2

4
 P

M

8
:2

6
 P

M

8
:2

8
 P

M

8
:3

0
 P

M

8
:3

2
 P

M

8
:3

4
 P

M

8
:3

6
 P

M

8
:3

8
 P

M

8
:4

0
 P

M

8
:4

2
 P

M

8
:4

4
 P

M

8
:4

6
 P

M

8
:4

8
 P

M

8
:5

0
 P

M

8
:5

2
 P

M

8
:5

4
 P

M

8
:5

6
 P

M

8
:5

8
 P

M

9
:0

0
 P

M

HGHRG

LOWRG

Effective POP

Actual Generation

Calculated Expected Gen

Standard Control Error = 4.62 

Expected Range = 29.44 

Performance Metric = 87.70% 

Bias = 1

Example - Poor Performance

Performance Metric = 100*1 






 −
−

Range

biasError



Performance Metric Implementation

 Compliance
 Test Additional Performance Metrics

 Develop 1 Hr Performance Metrics

 Evaluate and Rank the Performance of Regulating Units

 Share Performance Metrics with Regulation Providers

 Eventually Penalize Poor Regulation Providers

 Real-Time Operations
 PI Process Book Displays 

 10 min Performance Metrics for NERC CPS2

 1 Hr Performance Metrics for Ranking Units



Calculation 

Requirements



Calculation Requirements

We wanted:

 Results posted close to real time (1 minute)

 Operational redundancy

 Single piece of code for all Units

 Calculations based on previous events

 Calculations backfilled in event of failure



Calculation Requirements

Calculation explanation:

Set Point

Expected Generation

Generation

0

Standard Control Error
10m Standard Deviation



Down, move forward

Calculation Requirements

Set Point

Expected Generation

Up, move forward

Partial Down\Up

Move Forward



Server and

Module Database

Structure



PI-ACE Server Structure

Operations
(Folsom)

PI-ACE

(Folsom)

Operations
(Alhambra)

Engineering 1
(Folsom)

Engineering 2
(Folsom)

PI-ACE

(Alhambra)

PI-ACE

(Folsom)

PI-ACE

(Folsom)

PI-UDS



PI-Module Database Structure

 126 Units on Automatic Generation Control (AGC)

 Each unit modeled in PI-Module Database



PI-Module Database Structure

 Aliases created for key Unit measurements:



PI-Module Database Structure

 Aliases needed for our calculation:

Module DB Alias

UNMW_GEN_MW

SETPT_GEN_MW

UAGC_GEN

Unit Reg Ramp Down Rate

Unit Reg Ramp Up Rate

Expected Generation

Standard Control Error

SCE 10min StdDev

SYSDataUpToCurrentSecond

Measurement

Generation

Set Point

On/Off AGC Control

Down Ramp Rate

Up Ramp Rate

Expected Generation

Standard Control Error

Standard Deviation (10min)

Data Status

-

-

-

-

-

-

-

-

-



Calculation 

Code

Layout



Typical Backfilling Calculation

Steps

1. Check current data flowing into PI Database

2. Set calculation start time equal to last event 

written to output tag

3. Set calculation end time as either:

• Current time

• Start time + 3 hours 

4. Gather all data for defined time period

5. Calculate results from data

6. Write results to output tags



Data Up-To-Date Calculation

Needed flag to control backfilling calculations 
which indicated data up-to-date

Dim bDataUpToSec As Boolean

bDataUpToSec = False

If FREQ01.PrevEvent > (mdblExeTime - 120) Then

bDataUpToSec = True

Else

If FREQ02.PrevEvent > (mdblExeTime - 120) Then

bDataUpToSec = True

Else

'Data not up to date... :-(

End If

End If

If bDataUpToSec = True Then

SYSDataUpToCurrentSecond.Value = "ON_LINE"

Else

SYSDataUpToCurrentSecond.Value = "OFF_LINE"

End If



Data Up-To-Date Calculation



Typical Backfilling Calculation



Examples
Set Point

Expected Generation

Generation

Standard Control Error

10m Standard Deviation



Examples

Set Point

Expected Generation

Generation

Standard Control Error

10m Standard Deviation



Examples

Set Point

Expected Generation

Generation

Standard Control Error

10m Standard Deviation



Issues

and

Solutions



(1) Dynamic Variable Sizing

Problem

 Used variables to hold retrieved data

 Forced Available memory to 0

 Caused excessive page file use

Solution

 Used the values collection to dynamically 

increase/decrease storage size needed



(1) Dynamic Variable Sizing

Available Bytes

Committed Bytes

Pages/sec



(1) Dynamic Variable Sizing

Values Collection Code Example

Dim piExpGenOutput As PISDK.PIValues

Dim piNamedValues As NamedValues

Dim dbTime As Double

Dim dbValue As Double

Set piExpGenOutput = New PISDK.PIValues

piExpGenOutput.ReadOnly = False

Set piNamedValues = New NamedValues

dbTime=<ENTER TIME VALUE>

dbValue=<ENTER RESULT VALUE>

piExpGenOutput.Add dbTime, dbValue, piNamedValues

For Each piVal In piExpGenOutput

Expected_Generation.Value(piVal.TimeStamp)=piVal.Value

Expected_Generation.PutValue

Next



(2) Data Retrieval

Problem

 Accessed data one event at a time for long 

time periods (3-12 hours)

 Slowed calculation time 

Solution

 Use .Values call to gather all data in one 

call into a values collection



(2) Data Retrieval

.Values Call to Gather Data

Dim piUNMWValues As PISDK.PIValues

Dim dbWrkStartTime As Double

Dim dbWrkEndTime As Double

Set piUNMWValues = Nothing

Set piUNMWValues = UNMW_GEN_MW.Values(dbWrkStartTime, 

dbWrkEndTime, btInterp)



(3) 2 PI-ACE Redundant Servers

Operations
(Folsom)

PI-ACE

(Folsom)

Operations
(Alhambra)

Engineering 1
(Folsom)

Engineering 2
(Folsom)

PI-UDS

PI-ACE

(Alhambra)



(3) 2 PI-ACE Redundant Servers

Problems

 Identified network stability as an issue 

 Found that a single context could force all 

calculations to re-start, putting an 

exceptional load on server

Solutions

 Currently working with Alex Zheng to 

streamline calculations and test alternate 

configurations



OSIsoft

 Tom Gilson

 Alex Zheng

 Don Smith

 Jon Peterson

Acknowledgements

California ISO

 Jim Hiebert

 Eric Whitley

 Tom Siegel

 Eric Leuze



Review

 Description of regulation and our metrics 

 Calculation requirements and database structure

 Code layout and issue/solutions



Discussion


