

Why Scalability?

- More data can be tracked every day
 - > Phones have GPS location data
 - Real-time monitoring in the home
 - Electrical usage
 - Security systems
 - ☐ Fire / Flood detection
 - > IT Applications
 - Every machine on a network needs monitoring
- **Example:**
 - > 700,000 homes x 10 data points = 7,000,000 points

Benefits

- IT Monitoring can detect
 - >Intrusions
 - > Impending hardware problems
 - ➤ Diagnose software problems
 - > Virus traffic
- Example:
 - Because WiredCity could detect and record the amount of inbound traffic from the Nimda worm, they got a refund from MCI Worldcom

- □ 100,000+ DataStreams
- □ 100's of simultaneous clients
- □ 300+ Interfaces
- □ 6,500+ Customers
- 1,000's of events recorded / sec

Issues Within Scalability

- A scalable system has several aspects
 - >Users served
 - ➤ Calculations and analysis
 - >Integration issues
 - > Data capacity
 - Data throughput
 - > Security
 - Infrastructure

User Load & Integration

- Users need fast access to the data
 - Client / Server users
 - >Stateless Users
- Client / Server users connect directly to PI
- Stateless Users
 - ➤ Broader audience
 - >PI ICE
 - Web services and integration

Security in ICE

Connections in ICE

Underlying Web Service Structure

Loosely Coupled Computing

- The idea of Web services
- Allows for computing in an environment that is:
 - > Asynchronous
 - > Stateless
 - > Platform independent
 - Geographically independent
- □ Will replace some "tightly coupled" computing

Tightly Coupled Computing

- □ Infrastructure-level ties between systems
 - Uses API calls
 - Usually proprietary
 - > Not as flexible
- Examples:
 - PI Interfaces to other information systems
 - OLEDB / ODBC connectors
 - Point-to-Point, Middleware, and other integration

Web Service Integration

Loosely coupled applications built on Web Service Integration Space

Traditional Tightly Coupled Integration Space

Web Services

Infrastructure

- OSIsoft is moving to .NET
- Older applications will migrate
- New applications will leverage the .NET Framework
- Management tools will use .NET
 - New tools coming for SMT (Systems Management Tools)
- Parts of the PI System will be accessible through .NET

Distributed Analysis

- Server Based
 - ➤ Performance Equations
- Desktop Based
 - ➤ Spreadsheets based on DataLink
- Distributed Calculations
 - > PI ACE
- Server load reduced
- Calculations can be reused

Security Concerns

- ☐ Isn't Microsoft a vulnerability?
 - > Over the last year
 - □ 26 vulnerabilities in Apache
 - □ 22 in Microsoft's IIS
 - > Key issue: system maintenance
- What about Nimda?
 - > 250,000 systems in 9 hours
 - > At least \$2.4B in damages
 - > Infection started July 13, 2001
 - Patch was available June 18, 2001 (MS01-033)

Security Response

- More accountability: Microsoft
- NIPC (National Infrastructure Protection Center) works with NERC and Microsoft to develop security procedures and standards
- Key precautions still remain
 - > Guard against social engineering
 - System maintenance
 - > Unknown vulnerabilities
 - WiFi, wardriving
 - Unprotected modem lines used for support

OSIsoft Security

- PI Point Security
- Trust Table
- Single direction PI to PI transfers
- Auditing
 - >A new database that records changes to PI
 - Points
 - Values
 - Module changes

What's Been Covered

- Handling user load
- Calculations
- Integration demand
- Security
- Infrastructure
- Million point PI Systems

- □ PI 1
 - ➤ 1983 HP-1000
 - ➤ 1985 Vax-VMS
 - ➤ 1988 PINet
 - □ Client/Server Architecture
- PI 2
 - ➤ 1992 Vax-VMS
 - > 1994 Alpha-OpenVMS
- □ PI 3
 - > 1993 Design Work

- □ PI 3
 - ➤Big 4 Unix
 - □ HP-UX
 - □ IBM-AIX
 - □ Dec-OSF/1
 - □ Sun-Solaris
 - Windows NT 3.51
 - Development Language C++

- □ PI 3
 - >Key concepts of PI 2 were used
 - □ Snapshot
 - □ Compression
 - □ Archive cache
 - Archive navigation
 - □ PINet

- □ PI 3
 - >Key new concepts
 - □ Multi-process
 - □ RPC Based Inter-process communication
 - PI SDK
 - Historization of many different data types
 - Doubles
 - Strings
 - BLOBs
 - Common code base for all platforms
 - 64 bit support

PI 3.0 to PI 3.3

- How much can you do in 7 years?
 - > Concentrated on features
 - □ Alarm
 - □ ACE
 - Totalizer
 - □ PI SDK
 - Batch Database
 - Module Database
 - Audit
 - □ NT Security
 - COM Connectors
 - Development Infra-structure
 - Automated builds and testing
 - Bug fixes
 - (just a few)

Scaling

- 1996
 - ➤ Typical system < 100K points
 - ➤ Data rates < 2000 Events/Second
- **2002**
 - >Many systems approaching 150K points
 - Up to 10,000 Events/Second

Limitations in PI 3.3

- Memory
 - ► 2 GB of virtual memory per process
 - □ Archive cache
- Inter-process communication
 - Compressed events from snapshot to archive
- Serialization of RPCs
 - > Archive sub-system handles one call at a time

PI 3.3 Cache Memory Issues

- □ Cache record can be quite large.
- Adding a single event requires entire cache record
- Systems receiving data for most points will have a large memory footprint
 - >Lots of cache activity
 - Pushing records out of memory
 - Reading records into memory

The PI 3.4 Cache

- Addresses Memory Issues
 - Smaller memory footprint
 - More efficient handling of new events
 - Same efficiency reading data
- Design Tradeoffs
 - More complicated

3.3 Snapshot – Archive Inter-process Communication

- Current Mechanism
 - Event received is processed by the compression algorithm.
 - ➤ If passes compression event is added to inmemory event queue
 - Events in queue are packaged and sent via an RPC to the archive process

3.3 Snapshot Buffering

- Archive unable to process compressed events
 - **Backups**
 - Extremely high data rates
 - >System problems
- Snapshot must write to "event queue" file
- Archive must read from the Snapshot event queue
- □ Result
 - 2 physical disk I/O's happen on same file

3.4 Snapshot – Archive Inter-process Communication

- Changed physical file to memory mapped file
 - File system feature
- Mapped by Snapshot and Archive
- Snapshot writes compressed events to "file"
- Archive reads compressed events from "file"
 - Synchronization techniques required to prevent corruption
- Buffering case handled by file system

- □ PI 3.3 all sub-systems are single threaded
- Requests to sub-systems are serialized
 - ➤ Archive example—3 simultaneous calls
 - □ Archive Summary
 - □ Plot values
 - Compressed values

RPC Serialization Solution

- Multiple Threads
 - Threads are the obvious approach
 - ➤ Unix and NT have very powerful and easy to use threading models
- Conceptually Simple
- But, easy to write bugs

Multi-Threading in PI 3.4

- PI 3 had some threading since the original release
 - ►PI Net Manager
 - >Sub-systems use a thread for reading messages
- □ PI 3.4 Sub-system Level thread model
 - ➤ Main "house keeping" thread
 - Read thread
 - >Message pump
 - Pool of worker threads

Multi-Threading in PI 3.4

- □ PI 3.4 Sub-system Level thread model
 - Every sub-system is multi-threaded
 - ➤ Sub-system must implement locks for optimal performance
 - ➤ Worker thread pool is configurable
 - Runtime
 - Kill threads
 - Suspend threads
 - Change priority
 - Add worker threads
 - Delete worker threads

Multi-Threading in PI 3.4

- What does this get us?
 - The archive call from Won't kill your system.
 - What will 10 archive calls form do to my system?

```
Long time1 = 100
Long time2 = 1134289
piar_summary ( 1023453, &time1, &time2, &rval, &pctgood, ARCTOTAL )
```

PI on 64 Bit Windows

One advantage: larger addressable memory

>32 bit: 2 GB

► 64 bit: 16 – 128 GB

□ XP-64: 16 GB

☐ .Net Enterprise Server: 64 GB

□ .Net Data Center: 128 GB

PI on 64 Bit Windows

- Disadvantages:
 - >Slower
 - > Very sensitive to properly optimized code
- Servers only
 - ► 64 bit Windows is not intended to replace 32 bit desktops.
 - >Only makes sense to port server applications
 - □ 64 bit development will be done on 32 bit machines

PI on 64 Bit Windows

- PI 3 is designed for 64 bit
 - ➤ Supports Dec OSF/1
 - □ Original release of PI supported Dec's 64 bit Unix and still does—HP Tru64 Unix.
- □ PI 3.4 will be 64 bit ready
 - Minor differences between Windows and Unix 64 bit
 - >3.4 will address these minor issues
 - >3.4 will compile cleanly

Summary

- Point Count limited by archive cache memory
- 3.4 archive cache is significantly smaller and more efficient
- Memory mapped files for configuration data
 - > Point Database
- Tested million point system on typical 32 bit server class machine
 - > 2P 1 GHz Pentium 4 / 4 GB Memory
 - > Several million points possible
- □ 64 bit, perhaps 50 Million points?

Summary

- □ Snapshot Archive inter-process communication
 - ➤ Significantly faster the RPC mechanism
 - > Memory mapped file shared by both processes
 - Backed by disk to insure no data loss
- RPC Serialization
 - Eliminated by threading
 - > Process several calls simultaneously

