
OSIsoft Overview

Developments in the PI System
Family of Products

Gregg Le Blanc

PI System Product Manager

Why Scalability?

More data can be tracked every day

➢Phones have GPS location data

➢Real-time monitoring in the home

Electrical usage

Security systems

Fire / Flood detection

➢ IT Applications

Every machine on a network needs monitoring

Example:

➢700,000 homes x 10 data points = 7,000,000 points

Benefits

IT Monitoring can detect

➢Intrusions

➢Impending hardware problems

➢Diagnose software problems

➢Virus traffic

Example:

➢Because WiredCity could detect and record the
amount of inbound traffic from the Nimda
worm, they got a refund from MCI Worldcom

Where is PI Today?

100,000+ DataStreams

100’s of simultaneous clients

300+ Interfaces

6,500+ Customers

1,000’s of events recorded / sec

Issues Within Scalability

A scalable system has several aspects

➢Users served

➢Calculations and analysis

➢Integration issues

➢Data capacity

➢Data throughput

➢Security

➢Infrastructure

User Load & Integration

Users need fast access to the data

➢Client / Server users

➢Stateless Users

Client / Server users connect directly to PI

Stateless Users

➢Broader audience

➢PI ICE

➢Web services and integration

Server Manager (PI SDK)

Safely exposes PI data

➢The PI Trust Table retains point by point

security

➢Connection management balances user requests

Internet Information Server

(IIS)

Browser

Security in ICE

PI Web Service

PI SDK

SOAP Messages

PI Enterprise Server

PI Point Security

Windows

Authentication

(Aggregated Queries)

PI Trust Table

Connections in ICE

Elvis

pidemo

Norton

piadmin

Alice

pialice

Ricky

piadmin

PI System

Lucy

pidemo

ICE
Norton, Ricky

Alice

Elvis, Lucy

PI SDK Server Objects

1 per unique PI user

1 TCP/IP Connection

per server

P

I

S

D

K

S
e

s
s

io
n

 M
a

n
a

g
e

r

Underlying Web Service Structure

PI ICE

Web Services

Layer

ICE

Web Parts

ICE

Web Parts

ICE

Web Parts

ICE

Web Parts

PI SDK

PI Server

Other

Historians

Relational

Databases

DCS

SCADA

LIMS…

Loosely

Coupled

Applications

Tightly

Coupled

Web

Services

Layer

Loosely Coupled Computing

The idea of Web services

Allows for computing in an environment that is:

➢ Asynchronous

➢ Stateless

➢ Platform independent

➢ Geographically independent

Will replace some “tightly coupled” computing

Tightly Coupled Computing

Infrastructure-level ties between systems

➢ Uses API calls

➢ Usually proprietary

➢ Not as flexible

Examples:

➢ PI Interfaces to other information systems

➢ OLEDB / ODBC connectors

➢ Point-to-Point, Middleware, and other

integration

Web Service Integration

Loosely coupled applications built on

Web Service Integration Space

Traditional Tightly Coupled Integration Space

ICE

KPI Reports

Auditing

ERP

Quality

Web Services

PI Batch

Web services

Relational DB

Web services

PI Auditing

Web services

ERP

Web services

PI ICE

Web services

Web Services Integration Space

Infrastructure

OSIsoft is moving to .NET

Older applications will migrate

New applications will leverage the .NET
Framework

Management tools will use .NET

➢New tools coming for SMT (Systems
Management Tools)

Parts of the PI System will be accessible through
.NET

Distributed Analysis

Server Based

➢Performance Equations

Desktop Based

➢Spreadsheets based on DataLink

Distributed Calculations

➢PI ACE

Server load reduced

Calculations can be reused

Security Concerns

Isn’t Microsoft a vulnerability?

➢Over the last year

26 vulnerabilities in Apache

22 in Microsoft’s IIS

➢Key issue: system maintenance

What about Nimda?

➢250,000 systems in 9 hours

➢At least $2.4B in damages

➢ Infection started July 13, 2001

➢Patch was available June 18, 2001 (MS01-033)

Security Response

More accountability: Microsoft

NIPC (National Infrastructure Protection Center) works

with NERC and Microsoft to develop security procedures

and standards

Key precautions still remain

➢Guard against social engineering

➢System maintenance

➢Unknown vulnerabilities

WiFi, wardriving

Unprotected modem lines used for support

OSIsoft Security

PI Point Security

Trust Table

Single direction PI to PI transfers

Auditing

➢A new database that records changes to PI

Points

Values

Module changes

What’s Been Covered

Handling user load

Calculations

Integration demand

Security

Infrastructure

Million point PI Systems

History of the Historian

PI 1

➢1983 HP-1000

➢1985 Vax-VMS

➢1988 PINet

Client/Server Architecture

PI 2

➢1992 Vax-VMS

➢1994 Alpha-OpenVMS

PI 3

➢1993 Design Work

History of the Historian

PI 3

➢Big 4 Unix

HP-UX

IBM-AIX

Dec-OSF/1

Sun-Solaris

➢Windows NT 3.51

➢Development Language C++

History of the Historian

PI 3

➢Key concepts of PI 2 were used

Snapshot

Compression

Archive cache

Archive navigation

PINet

History of the Historian

PI 3

➢Key new concepts

Multi-process

RPC Based Inter-process communication

– PI SDK

Historization of many different data types

– Doubles

– Strings

– BLOBs

Common code base for all platforms

– 64 bit support

PI 3 Original Release

PI 3.0 Released November 1995

1,000 to 100,000+ Points

Up to 2000 events per seconds

PI 3.0 to PI 3.3

How much can you do in 7 years?

➢Concentrated on features
Alarm

ACE

Totalizer

PI SDK

Batch Database

Module Database

Audit

NT Security

COM Connectors

Development Infra-structure
– Automated builds and testing

Bug fixes
– (just a few)

Scaling

1996

➢Typical system < 100K points

➢Data rates < 2000 Events/Second

2002

➢Many systems approaching 150K points

➢Up to 10,000 Events/Second

Scaling

1995

➢Intel® Pentium® Pro Processor 2P 200MHz

2002

➢Intel® Xeon™ Processor 4P 1.6 GHz

Scaling

The PI data rates reflect increase in processor

speed.

Point Count does not.

Limitation is not processor speed.

Limitations in PI 3.3

Memory

➢2 GB of virtual memory per process

Archive cache

Inter-process communication

➢Compressed events from snapshot to archive

Serialization of RPCs

➢Archive sub-system handles one call at a time

Memory

PI Databases are memory resident

➢Point database

➢Module database

➢Snapshot

PI Archive Cache

PI 3.3 Cache Memory Issues

Cache record can be quite large.

Adding a single event requires entire cache record

Systems receiving data for most points will have a

large memory footprint

➢Lots of cache activity

Pushing records out of memory

Reading records into memory

PI 3.4 Archive Cache

Typical PI System

➢Majority of points receive data regularly

Add events

New events received in order, and near current time

The PI 3.4 Cache

Addresses Memory Issues

➢Smaller memory footprint

➢More efficient handling of new events

➢Same efficiency reading data

Design Tradeoffs

➢More complicated

3.3 Snapshot – Archive

Inter-process Communication

Current Mechanism

➢Event received is processed by the compression

algorithm.

➢If passes compression event is added to in-

memory event queue

➢Events in queue are packaged and sent via an

RPC to the archive process

3.3 Snapshot Buffering

Archive unable to process compressed events

➢Backups

➢Extremely high data rates

➢System problems

Snapshot must write to “event queue” file

Archive must read from the Snapshot event queue

Result

➢2 physical disk I/O’s happen on same file

3.4 Snapshot – Archive

Inter-process Communication

Changed physical file to memory mapped file

➢File system feature

Mapped by Snapshot and Archive

Snapshot writes compressed events to “file”

Archive reads compressed events from “file”

➢Synchronization techniques required to prevent

corruption

Buffering case handled by file system

Limitation 3: RPC Serialization

PI 3.3 all sub-systems are single threaded

Requests to sub-systems are serialized

➢Archive example—3 simultaneous calls

Archive Summary

Plot values

Compressed values

RPC Serialization Solution

Multiple Threads

➢Threads are the obvious approach

➢Unix and NT have very powerful and easy to

use threading models

Conceptually Simple

But, easy to write bugs

Multi-Threading in PI 3.4

PI 3 had some threading since the original release

➢PI Net Manager

➢Sub-systems use a thread for reading messages

PI 3.4 Sub-system Level thread model

➢Main “house keeping” thread

➢Read thread

➢Message pump

➢Pool of worker threads

Multi-Threading in PI 3.4

PI 3.4 Sub-system Level thread model

➢Every sub-system is multi-threaded

➢Sub-system must implement locks for optimal
performance

➢Worker thread pool is configurable

Runtime

– Kill threads

– Suspend threads

– Change priority

– Add worker threads

– Delete worker threads

Multi-Threading in PI 3.4

What does this get us?

➢The archive call from …. Won’t kill your

system.

➢What will 10 archive calls form …. do to my

system?

Long time1 = 100

Long time2 = 1134289

piar_summary (1023453, &time1, &time2, &rval, &pctgood, ARCTOTAL)

PI on 64 Bit Windows

One advantage: larger addressable memory

➢32 bit: 2 GB

➢64 bit: 16 – 128 GB

XP-64: 16 GB

.Net Enterprise Server: 64 GB

.Net Data Center: 128 GB

PI on 64 Bit Windows

Disadvantages:

➢Slower

➢Very sensitive to properly optimized code

Servers only

➢64 bit Windows is not intended to replace 32 bit

desktops.

➢Only makes sense to port server applications

64 bit development will be done on 32 bit machines

PI on 64 Bit Windows

PI 3 is designed for 64 bit

➢Supports Dec OSF/1

Original release of PI supported Dec’s 64 bit Unix
and still does—HP Tru64 Unix.

PI 3.4 will be 64 bit ready

➢Minor differences between Windows and Unix
64 bit

➢3.4 will address these minor issues

➢3.4 will compile cleanly

Summary

Point Count limited by archive cache memory

3.4 archive cache is significantly smaller and more
efficient

Memory mapped files for configuration data

➢Point Database

Tested million point system on typical 32 bit server class
machine

➢2P 1 GHz Pentium 4 / 4 GB Memory

➢Several million points possible

64 bit, perhaps 50 Million points?

Summary

Snapshot – Archive inter-process communication

➢Significantly faster the RPC mechanism

➢Memory mapped file shared by both processes

➢Backed by disk to insure no data loss

RPC Serialization

➢Eliminated by threading

➢Process several calls simultaneously

Questions?

