

Using PI-ACE to Calculate Regulation Performance Metrics

Prepared by

Craig Taylor and Don DeBerry

Presentation to 2003 OSIsoft T&D Users Conference

Agenda

Don Covering

- Description of Regulation
- Regulation Performance Metrics
- ProcessBook Display Examples

Craig Covering

- California ISO Server Structure
- PI-ACE Tip: Adding Multiple Similar Contexts
- Our last year: Successes and Failures
- Future PI-ACE Plans

What is Regulation?

Regulation – Generators equipped with Automatic Generation Control (AGC) that can change output quickly to accommodate the fluctuations in system supply and demand.

What is Regulation?

- Ancillary Service Expensive
- Reserved Capacity
- Generators Controlled by CAISO EMS
- Telemetry Requirements
 - Two Way Communication
 - Verify AGC Status
- Generators Require Certification
- Approximately 100 Units Certified
- Typically 5-20 Units (CAISO system)

Why are Performance Metrics Needed?

Improve the Quality of Regulation Service

- Rank Regulation Performance
- Share information with Generator Owners
- May Eventually Penalize Poor Performers

Improve Reliability

- Better Response to System Emergencies
- NERC Control Performance Standards

Reduce Costs

Improve Efficiency of Regulation Service

Performance Metric Requirements

Operations Requirements

- Performance During 10 Minute Intervals
- Indicate a Variety of Regulation Performance Problems
- System Performance and Individual Unit Performance
- Alignment with Certification Tests

Compliance Requirements

- Performance During 1 Hour Intervals
- Provides a Link to Billable Market Quantities
- Historic Information
- Alignment with Certification Tests

EMS Requirements (All of Above Plus...)

- Performance Analysis Capabilities
- Ability to Send Trends to Generator Operators

Regulation – System Perspective

Regulation – System Perspective

Regulation – Generator Parameters

Regulation – Generator Parameters

Regulation – Unit Control

Calculated with PI-ACE

- 1) Energy Calculations
- 2) Line Statistic Calculations

Calculation Period

- Instantaneous Value
- 10 Min Summation
- 1 Hr Summation

Performance Metric Formulas

Supplier Control Error Energy

$$SCE = \sum_{j=1}^{N} ABS \ (Actual_{j} - Expected_{j})$$

$$SCEPerf = \left(1 - \frac{SCE - bias}{Error}\right) * 100$$

Where:

Bias = 1 mwh

Error = 10 mwh (10 *bias)

If SCE > 11*bias, SCEPerf = 0%

Performance Metric Formulas

Line Statistics

$$StdDevRatio = \sigma_{Actual} / \sigma_{Expected}$$

$$Correlation = \frac{\sum_{j=1}^{N} (Expected_{j} - \mu_{Expected})(Actual_{j} - \mu_{Actual})}{(\sigma_{Actual} * \sigma_{Expected})}$$

Where StatPerf = 1 if
$$\sigma_{Expected} = 0$$
 or $\frac{\sigma_{Actual}}{\sigma_{Expected}} > 2$

Performance Metric Formulas

Performance Metric

$$PerfMetric = \frac{(SCEPerf + StatPerf)}{N} * 100$$

Where:

N=1 if StdDevRatio or Correlation fail (StatPerf = 1)

N=2 if StdDevRatio and Correlation are good

Regulation – System Perspective

Regulation – System Perspective

Unit Names were Removed

Example - Good Performance

Example – Border Line Performance

Example - Poor Performance - Oscillation

alifornia ISO

Overall Performance

PerfMetric = 33.6%

= 51.0%

Example - Poor Performance – Long Delay

Performance Metric Implementation

- Test Performance Metrics
- Develop Performance Criteria
- Incorporate Performance into Regulation Certification Tests
- Evaluate and Rank the Performance of Regulating Units
- Share Performance Metrics with Regulation Providers
- May Eventually Penalize Poor Regulation Providers

Craig Covering...

- California ISO Server Structure
 - (Data and Module Database)

PI-ACE Tip: Adding Multiple Similar Contexts

Our last year: Successes and Failures

Future PI-ACE Plans

ISO PI Infrastructure

- Paired PI Data servers with PI ACE servers
- Majority of data provided via EMS
- PI-ACE Server also Provides Module Database

Server Specifications

Component	PI Data Servers	PI-ACE Servers	
System	HP DL 580	HP DL 380	
CPU's 4 x 700Mhz		2 x 2.1 Ghz	
Memory 1 Gigabytes		2 Gigabytes	
Controller	Built into Mother Board	Built into Mother Board	
Outside Network 100 Megabit Full Duplex		100 Megabit Full Duplex	
Backup Network	FDDI	N/A	
	HP HSG80 Controller	2 x 18 GB Mirrored	
Disk Storage	Brocade Silkworm 2800		
	300 Gigabytes		

ISO PI Infrastructure

Pl-Module Database Structure

- 94 Units on Automatic Generation Control (AGC)
- Each unit modeled in PI-Module Database

PI-Module Database Structure

Aliases created for key Unit measurements:

Sub-Modules

🗞 - Pl Aliases -

Pl Properties

▲PIAlias Name	Tag Name
🔖 BSEPT_GEN_MW	Effective POP for BLACK_7_UNIT 2
🔖 Effective High Reg Limit	Effective High Reg Limit for BLACK_7_UNIT 2
🔖 Effective Low Reg Limit	Effective Low Reg Limit for BLACK_7_UNIT 2
🔖 EFFECTIVE_POP	Effective POP for BLACK_7_UNIT 2
🔖 EXPECTED_GENERATION	Expected Generation for BLACK_7_UNIT 2.CV
🔖 HGHRG_GEN_MW	Effective High Reg Limit for BLACK_7_UNIT 2
🔖 LOWRG_GEN_MW	Effective Low Reg Limit for BLACK_7_UNIT 2
🔖 PROVIDED_REGULATION_10MIN_AVG	Provided Regulation 10min Avg for BLACK_7_UNIT 2.CV
🔖 PROVIDED_REGULATION_1HR_AVG	Provided Regulation 1hr Avg for BLACK_7_UNIT 2.CV
🔖 SCE	Supplier Control Error for BLACK_7_UNIT 2.CV
🔖 SCE_10MIN_AVG	Supplier Control Error 10min Avg for BLACK_7_UNIT 2.CV
🔖 SCE_1HR_AVG	Supplier Control Error 1hr Avg for BLACK_7_UNIT 2.CV
🔖 SETPT_GEN_MW	BLACK .UNIT 2 SETPT_GEN_MW7 .AV
🔖 SETPT_GEN_MW_Q	BLACK .UNIT 2 SETPT_GEN_MW7 .AQ
🔖 SYSEMSDataUpToCurrentSecond	SYSEMSDataUpToCurrentSecond.CV
🔖 SYSPIDATAUPTODATE	SYSPIDataUpToCurrentSecond.CV

PI-Module Database Structure

Aliases needed for our calculation:

	<u>Measurement</u>		Module DB Alias
•	Generation	_	UNMW_GEN_MW
	Set Point	_	SETPT_GEN_MW
	On/Off AGC Control	_	UAGC_GEN
	Down Ramp Rate	-	Unit Reg Ramp Down Rate
	Up Ramp Rate	-	Unit Reg Ramp Up Rate
	Expected Generation	-	Expected Generation
	Standard Control Error	-	SCE
	Standard Deviation (10min)	-	SCE 10min StdDev
	Data Status	_	SYSDataUpToCurrentSecond

PI-ACE Tip: Adding Multiple Similar Contexts

```
Dim piUnitMods As PISDK.PIModules
Dim piUnitMod As PISDK.PIModule
Dim piNamedValues As NamedValues
Dim bAddContextStatus As Boolean
For Each piUnitMod In piUnitMods
   'Set up NamedValues for context
  Set piNamedValues = New NamedValues
  piNamedValues.Add "Type", 0
                                 'Schedule Type
  piNamedValues.Add "Offset", 0 'Offset
  piNamedValues.Add "Priority", 3 'Priority
  bAddContextStatus = CreatePIACEModule(
     "\\server\ACECompliance\GenerationPerformance\" &
     "\\localhost\Units\" & piUnitMod.Name)
  bAddContextStatus = AddPIACEContextSchedule(
     "\\server\ACECompliance\GenerationPerformance\" &
      "\\localhost\Units\" & piUnitMod.Name, piNamedValues)
Next
```


Last Year Successes

Implemented PI-ACE server infrastructure

 Setup and started 94 calculation to monitor unit quality performance

Monitored AGC unit performance

Last Years Failures and Solutions

- Calculation contexts failed and had to be restarted by hand
- Changed 2 configurations stop failures:
 - Modified and improved the ACE code
 - Increased the "CalculationLimit" ACE property from the default (5min) to 60min

Future Plans for PI-ACE

- Calculate load curves for our load forecasting
- Post results to web...

Future Plans for PI-ACE

Regulation Performance Metric

 Improve PI-ACE calculation that produces the performance metric result

 Create standard daily/hourly reports detailing AGC unit performance

Tie the metric results into our AGC market

Discussion

