Do you know if your Process is Stable?

Dofasco's Advanced Monitoring Applications

R. Rumpler, A. Smyth

OSISOFT Users Conference

Monterey, California

March, 2002

Outline

- Background on Dofasco
- Why is Dofasco using PI?
- Gaining value from data -Advanced Monitoring Applications
 - Caster SOS ™ (Stable Operation Supervisor)
 - C-MAP™ (Controller Monitoring and Assessment of Performance) at the NG Mixing Station
- Questions

Dofasco Hamilton Works

- One of Canada's largest fully integrated steel producers
- ≈ 4.4 million tons of steel
 Shipped in 2001 with
 sales ≈ 3 billion \$(Can)
- ≈ 7500 employees
 - ≈ 1000 in technology areas
- A North American leader in profitability

Why is Dofasco using PI?

- Blast Furnace Hearth Breakout 1994
 - Requirement to monitor lining of the furnace for possible breakouts and important safety functions
 - Level 1 hardware upgraded
 - Many new thermocouples added to hearth
 - There were not many products on the market that could store vast quantities of historical data without taking up a lot of disk space

Why is Dofasco using PI?

Benefits of Using PI

- Link to various PLC & DCS systems
- Common user interface regardless of the type of PLC & DCS
- Ease of use (anyone can build their own screens in a matter of minutes)
- Proprietary compression algorithm minimizes use of disk space

Why is Dofasco using PI?

Benefits of Using PI

- Operators and technical personnel can use PI
 Processbook and PI Datalink to tune loops and quickly troubleshoot problems without going into the plant
- Data can be manually stored in PI
- Models that monitor the performance of the process and preemptively warn operations of deteriorating performance have been developed using PI Processbook as the HMI. (CMAP, SOS etc.)
- PI data (daily totals) is loaded into Oracle for cost accounting purposes

Caster Stable Operation Supervisor (SOS)

Continuous Casting

What is the Caster SOS?

- The SOS is a software tool that monitors the state of the casting process at sub second intervals and alarms to the operator when an unusual event happens. (Multivariate Statistics)
- It also organizes the process data to help in troubleshooting during casting and after the fact.

Dofasco's #1 Continuous Caster

Caster SOS commissioned on Dofasco's # 1 Continuous Caster in 1997

Dofasco's #2 Continuous Caster

#2 Caster SOS commissioned on Dofasco's # 2 Continuous Caster in Feb 2002

Motivation

Motivation for the Caster SOS

Required a system that would help:

- Improve process stability
 - increase throughput
 - reduce faults
- Give operator's better process understanding, help them overcome "data overload"
 - currently they are expected to monitor hundreds of variables at once
- Commercial products were not providing the solution that was needed.

SYSTEM OVERVIEW

Step 1: A model with associated alarming thresholds is developed offline using data from periods of known good operation, deliberately excluding data for which the system should provide an alarm.

Tundish Temperature Clogging Index Mould Width Reference Mould Level Data Cast Speed Mould Temperatures Model **S**hold Step 2: Data are gathered from throughout the casting process

Step 3: The model summarizes the input variables into performance indicators that are monitored in real time

and are

time.

processed in real

Step 4: The Caster SOSTM tests the performance indicators against predetermined thresholds to determine if the present casting conditions conform to known good casts, and issues an alarm if not.

Multivariate

SPC

Monitoring

Caster SOS

Step 7: Further
by investigation is performed by viewing the individual process trend charts.

have a significant impaction the performance of the laster.

Step 5: The information is presented graphically on the Summary Screen. When the system approaches abnormal operating conditions the graph(s) turns amber offering a warning to the operators. When an alarm situation occurs, the appropriate graph(s) turns red and an audible alarm sounds indicating that casting is abnormal.

Step 6: The alarm is diagnosed by the operator using the contribution information provided by the system. This contribution view highlights the variables that have a significant impact on the performance of the caster.

Step 7: Further investigation is performed by viewing the individual process trend charts.

TREND VIEW

ed

nat

- Platform chosen because of ease of use
- Operator screens done with PI Process
 Book utilized the available features
 - Trends Tool, Value Tool, Multi-States, Buttons
- Screens have been modified several times based on operator feedback - key to successful implementation

Flexibility

 Developed a custom trend configuration screen using VBA to give the operators the ability to trend any of the system variables together

Flexibility

 Developed a VB program that can statistically analyze the performance of the system

Flexibility

 Developed software based on downloaded "replay code" from the Devnet - able to see what the operators would have seen after the fact

Results

- Greater confidence in operation
 - Better process information
 - Continuous indication of process stability
 - Improved process understanding
- Increased Throughput
- Decreased Breakouts
- Real \$ Benefit
- Unexpected Benefits
- Multiple Patents Pending

#1CC Results

C-MAP at the Natural Gas Mixing Station

Troubleshooting with C-MAP

Suggests something has changed with respect to the controller. Automation personnel need to perform an off-line investigation

Natural Gas Mixing Station - Process Description

- Coke oven gas (COG) byproduct in the cokemaking process
- COG valuable byproduct fuel high heating value (500 btu/ft³)
- COG sent to blast furnace stoves, coke ovens, various boilers and reheat furnaces
- Demand >Supply Therefore Installation Natural Gas Mixing Station - dilutes natural gas with air to produce a "synthetic COG"

Objectives of C-MAP at the Mixing Station

- On-Line Monitoring of System
 - Timely Detection of System Faults
- Better Understanding of Faults
 - Compressor Problems
 - Pipe Plugging
 - Need for Controller Re-tuning?

System Architecture

Advanced Monitoring Applications using PI

Variance CPI Control Chart for Steady State

Variance Error Squared Control Chart for Steady State

Minimum Variance Control Chart for Steady State

Questions

Movie

