Making use of "LARGE" Models

How to benefit from and use the Module Database

A little about :

- Have been developing with the MDB for ~1 year.
- Developing products to add value in maintaining models in the MDB.
 - Scaleability
 - Large numbers of Modules (e.g. 1.5M)
 - Tested to 100K so far

Information Available

	- Search <u>C</u> riteria	
Historized values only	P <u>l</u> Server: 192.168.1.102	<u>C</u> onnections
useful within a known	Tag Mask: *	<u>S</u> earch
	Descriptor:	<u>A</u> bort
context.	Pt Source:	<u>R</u> eset
	⊻alue: <mark>*</mark>	
Contaut ambaddad in		Se <u>l</u> ect All
Context embedded in	Search Results	<u>P</u> t. Attr.
tag names.	\\192.168.1.102\1611 !1611 !DG	
	\\192.168.1.102\1611 11611 MWIAI \\192.168.1.102\1611 11611 Y 40KVIAI	ОК
	\\192.168.1.102€1615 !1615 MV!AI	Cancel
	\\192.168.1.102\1615 !1615 Y 40KVIAI \\192.168.1.102\1616 !1616 !DG	<u>H</u> elp
	\\192.168.1.102\1616 !1616 MV!AI \\192.168.1.102\1616 !1616 MW!AI \\192.168.1.102\1616 !1616 Y 40KV!AI ▼	
	List Count: 11921 Percent: 100	

x

Knowledge can be achieved:

Context is more difficult when:

- larger companies
- multiple organizations are involved.
- geographic separation of process from user of information.
- there is a "failure to communicate"

Some values are:

- Associated with objects (e.g. a valve).
 - Number of operations
 - Time in service

• As objects are moved, values need to move with object.

Inherent MDB Benefits

- Ability to provide context for process information.
- Ability to provide long-term history of object operation.
- Ability to minimize interpretation errors.

SISCO saw additional benefits:

- Ability to synchronize contexts.
- Ability to define programmatic methods to allow association.
- Ability to develop more general and reusable applications.
- Lower risk during deployment.
- Minimize human error.

Classes and Instances of Objects

1 Reaction Vessel

Class Definition depends on Use

• Asset Management

- Vendor
- Purchase Date
- Commission Date
- Location....
- Operational
 - Position
 - Differential Pressure
 - Attached to pipe()...
 - ControlledBy()....

How many pipes can be attached to a valve?

Associations Need to be bi-directional

A valve is AttachedTo 0..2 pipes.

Allows users/programs to locate which pipe a valve is attached (knowing valve)

A pipe is AttachedTo 0..n valves.

Allows users/programs to locate which valve(s) are attached (knowing pipe)

Users/Programs Use Model to:

- Locate a particular valve knowing the object being looked for is a valve and its name.
- Locate a particular valve based upon its location in a operational system***.
- Locate a particular pipe based upon its valves***.
- Locate a particular valve based upon what controls it.

Sample valve definition build-out

First Decisions:

Need to plan for multiple models in the MDB.

SISCO's design choices:

Need to be able to determine where the start of a model is.

Need to prevent namespace collision.

Next Decide on How users want to use information

Decide on Model Definition

MDB Representation

Objects are Instances of Classes

Objects relate to other Objects

V1

osiusergroup:InstanceView **T**2 🖮 💽 osiusergroupClass:ReactionVessel 🗄 💽 osiusergroupInstance:React_1 🗄 📲 osiusergroupInstance: Valve_3 **P1** 🖮 🙀 osiuserqroupInstance:Pipe_1 🗄 🕅 osiusergroupInstance: Valve_1 🔀 osiusergroupInstance: Tank_1 🙀 osiusergroupInstance:Valve_4 🖮 💽 osiusergroupInstance: Pipe_2 🗄 🔝 osiusergroupInstance: Valve_2 🛄 📷 osiusergroupInstance: Tank_2 🖮 💽 osiusergroupInstance: Valve_5 🙀 osiuserqroupInstance: Tank_3

What if user wants to start with tanks instead?

What if users wants Tanks?

From: Class View

Q:Where are the valves?

A: Circular references are not allowed in the MDB.

So what to do?

A:Embed Object Relationships

📓 Sub-Modules 🔯 PLAliases 📓 PLP	roperties
▲ PIProperty Name	Value
assoc:Container.AttachedTo_Pipe □ assoc:Container.AttachedTo_Valve └── osiusergroupInstance:Valve_1 Container.MaxPressure Container.MaxVolume Container.Volume DeletionPending InstanceOfClass Naming.name PhysicalAsset.Location PhysicalAsset.PurchaseDate rdfId SubClassOf VerificationNeeded	FALSE Tank Tank_1 Tank_1 Container TRUE

Allows programmatic transversal of object relationships!

Example

Imagine:

- If names were numbers.
- If there were multiple object types at a single level.
- 100 object instances at a single level.

Imagine large models:

- Utility industry models (network)
 10K-1.5M Modules (50K Typical)
- Generation facilities (500-10K Typical)
- Process/Batch Facilities (500-10K)

Other truths:

- Models are not static
 - Equipment is added/moved/removed
 - Schedules can be changed
- Models need to be shared.
 - Synchronization becomes an issue
- Models need to be well thought out in order to allow applications to take advantage.

Models can assist applications

Sharing of Models

- Common Model consists of several subsets.
- Subsets "owned by" different entities.

Model Events change Context

• Adding an Object

- E.g. a new tank/reactor has been added in a plant.

- Modify of an existing object
 - A valve has been moved
- Deleting an object
 - Valve destroyed.

Why use the MDB

- MDB Benefits
 - Integrates seamlessly with OSI environment.
 - Historizes changes
 - Provides "efficient" methods for hierarchical and browsable models.
 - OSI continues refinements...

Cost Justifications Ease for

- systems requiring contextual tracking
- systems where users desire "context" and real-time merging.
- systems where historian function is needed but unknown numbers/types of databases.

