
Copyright © 2002 OSI Software, Inc. All rights reserved.

.NET Experiences

Chris Manhard and David Hearn

OSI Software, Inc.

Agenda

• Microsoft .NET overview

• PI Application Framework and .NET

• Development Experiences

• Using .NET with existing PI tools

• Opinions and Recommendations

Microsoft’s .NET Goals

• Unifies programming models

• Dramatically simplifies development

• Supports multiple programming languages

• Provides robust execution environment

• Natively supports XML Web Services

Microsoft .NET Platform

• Consistent programming model

• Includes clients, servers, services

• Development tools

Microsoft .NET Architecture

Operating System

Common Language Runtime

Base Class Library

ADO.NET and XML

ASP.NET

Web Forms Web Services

Mobile Internet Toolkit

Windows

Forms

Common Language Specification

VB C++ C# JScript …
V

is
u

a
l S

tu
d

io
.N

E
T

Unify Programming Models

Windows API

.NET Framework

Consistent API availability regardless of

language and programming model

ASP

Stateless,

Code embedded

in HTML pages

MFC/ATL

Subclassing,

Power,

Expressiveness

VB Forms

RAD,

Composition,

Delegation

The .NET Evolution – Before COM

Before COM, applications were

completely separate entities

with little or no integration

Applicatio

n

Code and data

structures

The .NET Evolution - COM

COM provides a way for

components to integrate.

However, each

component must provide

the “plumbing” and

objects cannot directly

interact.

The .NET Evolution - Now

With the .NET Framework

common language runtime,

components are built on a

common substrate. No

“plumbing” is needed and

objects can directly interact

Robust Environment

• Automatic lifetime management

– All objects are garbage collected

• Exception handling

– Error handling 1st class and mandatory

• Type-safety

– No buffer overruns, unsafe casts, or uninitialized variables

– Base types are treated as true objects

• Deployment and management

– Assemblies, side-by-side execution

– No more DLL hell!

Assemblies
• Unit of deployment

– One or more files, independent of packaging

– Self-describing via manifest

• Versioning

– Provided by compiler use of attributes

– Policy per-application as well as per-machine

• Security boundary

– Assemblies are granted permissions

– Methods can demand proof that a permission

has been granted to entire call chain

• Types named relative to assembly

• Shared assemblies placed in GAC

PI Data from a Web Service Demo

• What is a Web Service

• Creating a web service

• Demo using PI OLE-DB

• Other ways to create a service

PI Application Framework Background

• Developing PI Application Framework

• Business Logic Layer

• Distributed Architecture

• Desire to publish / consume data across the

various channels

PI Application Framework C++

Development

• Used C++ and ATL template library

• Common code abstracted to templates

• Override default template methods

PI Application Framework C#

Development

• Direct access to objects

• Methods declared as ‘internal’ or ‘public’

• Single inheritance of base class

• Reduction in code

• Improved error handling

• Faster compile times

Reduction in Code – iterating a COM

object using C++
// Create the PISDK object

PISDK::IPISDKPtr spPISDK;

spPISDK.CreateInstance("PISDK.PISDK");

PISDK::ServersPtr spPIServers= spPISDK->Servers;

// Enumerate over the collection using sequential access

HRESULT hr;

IEnumVARIANTPtr spEnum= spPIServers->Get_NewEnum();

do

{

ULONG numFetched;

CComVariant varItem;

hr= spEnum->Next(1, &varItem, &numFetched);

if(hr == S_OK)

{

PISDK::ServerPtr spPIServer(varItem);

MessageBox(NULL, spPIServer->Name, "PI Server", MB_OK);

}

}

while(hr == S_OK);

Reduction in Code – iterating a COM

object using C#

// Create the PISDK object

PISDK.IPISDK piSDK= new PISDK.PISDKClass();

// Enumerate over the collection using sequential access

foreach(PISDK.Server item in piSDK.Servers)

{

MessageBox.Show(item.Name, "PI Server");

}

Error Handling in C++

try

{ // Code which might throw an exception.

PISDK::ServerPtr spPIServer= spPIServers->GetDefaultServer();

if(spPIServer == NULL)

return AtlReportError(CLSID_PIAF,

“Failed to get default server”, IID_Server, hres);

}catch(…)

{

return AtlReportError(CLSID_PIAF,

“Failed to get default server”);

}

Error Handling in C#

PISDK.Server piServer= spPIServers.DefaultServer;

if(piServer == null)

return System.InvalidOperation(“Failed to get default server”);

Interop With COM

COM

Only COM

Client

.NET

Client
COM

Server

.NET

Server

.NET

Only

Unmanaged Code Managed Code

PIAF SDK

PISDK

ASP/IIS

ProcessBook

Invoking PI-SDK from .NET

• Use References, just as in VB6

• Use PISDK 1.2 if calling from IIS

• Some parameters must be ‘boxed’ in C#
namedValues.Add(“Level”, 0.0)

becomes
Object val = 0.0;

namedValues.Add(“Level”, ref val);

• Must create top level PISDK object

• PISDK.PISDK and PISDK.Server conflicts

Web Form Demo with PISDK

<This page is intentionally blank>

Calling the PI API from .NET

1. Must use locking if calling from within IIS

2. Run Migration Utility on PIAPI32.BAS

3. Add Structure Layout Attributes

<struct layout sequential>

4. Change ANY types to defined types

5. Change buffers from Strings to StringBuilder

6. Rename variable as appropriate

7. Arrays should marshal fine

Hints and Tips

• Learn the .NET framework

• Option Strict On in VB.NET

• Use StringBuilder instead of String

• Don’t modify a collection while iterating it

• Add ASPNET user account bug

• Use ComSourceInterfaces attribute with

‘typeof’ parameter when exposing events.
[ComSourceInterfaces(typeof(OSIsoft.AFSDK._IAFCollectionEvents))]

Top 10 Favorite Things in .NET

• C# is easy transition

• Remoting capabilities

• ASP.NET simplifies web

development

• Rich Framework

• Exception Handling

• Com Interop / PI

• Code Editor

• Development

Environment

• Compile Speed

• Unified Development

Top 10 Least Favorite Things in .NET

• Information overload

• WinForms is step back

from VC6

• All tools not yet

integrated

• VB Migration Tool

• Poor support of VS6

resource editor

• Versioning – Side by
Side hell?

• Install – not as easy as
advertised

• Beta Software

• Can’t Write ActiveX
Controls

• Change

When to use Microsoft .NET

• Building Distributed Applications (n-tier)

– Especially client and business tiers

• Creating Web Services

• Creating ASP Web Site

• Creating small to medium size applications

When NOT to use Microsoft .NET

• Large Traditional Applications

• Smaller Applications, especially if distributing

.NET Framework (21 Meg) is an issue, or

Win95 support required.

• Creating ActiveX Controls

• Real-Time Requirements

• External Toolset Requirements

• Projects where migration might be difficult

Summary

What is .NET?

• Related Presentations

– PI Application Framework, (351) Wed. 8:00 AM

– Application Module Example Using the Application Framework

(112) Mon. 1:50 PM, (352) Wed. 8:50 AM

– Sigmafine 4.0 (342) Wed. 8:50 AM

• Demo Room (Tuesday, 1:00 pm to 6:00 PM)

– PI Application Framework

– Application Framework Applications

– Sigmafine 4.0

• Questions

