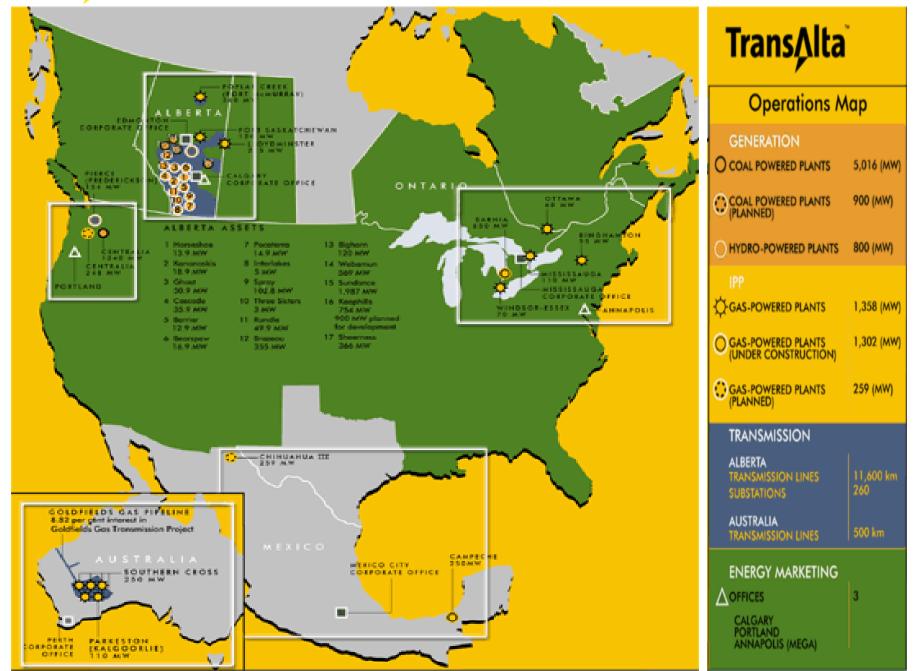

# **Real Time at TransAlta**

Presented by: Keith Christianson March 4<sup>th</sup>, 2002 Monterey, California




Presentation Overview

- Introduction to TransAlta and Real Time
- Project description
- Implementation and technology
- Benefit Assessment
- Future thoughts
- Conclusions



#### **Trans**Alta

### **TransAlta Operations**





- Canada's largest non-regulated electricity generation company
- 4,115 MW from coal-fired and hydro plants in Alberta
- 1,340 MW from coal-fired plant and mining operation near Centralia, Washington
- 2000 MW Gas fired CoGen units with + 900 MW this year

#### **Industry Outlook**

- On Jan. 1 Alberta generating plants began operating under long-term power purchase arrangements; their generation is now sold under contract to power marketing Companies.
- On July 4 announced plans to sell Alberta-based Transmission business, choosing to focus on the Generation business.

#### **Growth Strategy**

- short-term target: increase total generating capability to 10,000 MW by 2002 and to 15,000 MW by 2005.
- plan to begin a 900 MW expansion of Keephills, Alberta coalfired generating facility. (2005)



Real Time for TransAlta

Belief that significant potential exists to:

- optimize plant equipment operation in Real Time
- optimize plant equipment operation in unison
- provide a direct assessment of business impacts of change (markets, equipment status, customer)
- make consistent KPIs visible to all (Dashboards)
- develop technology for rapid deployment

Therefore, do a pilot at one site to prove Real Time concepts

#### Trans∧lta

# The site

- Major Heavy Oil extraction facility located in North Eastern Alberta, Canada
- November doubled the plant output to 250 K barrels of synthetic crude oil per day
- TransAlta contracted to supply power and energy needs (hot water, steam, compressed air)
- Power exchanged with the Alberta Power Pool





Site host and selection

- A 360 MW cogeneration facility was constructed in 2001
- Any surplus power is available for sale to the power grid. (pay for the gas)
- Available fuels are Coke, Coker Gas for boilers with supplemental natural gas.





Ideally suited to pilot Real time because:

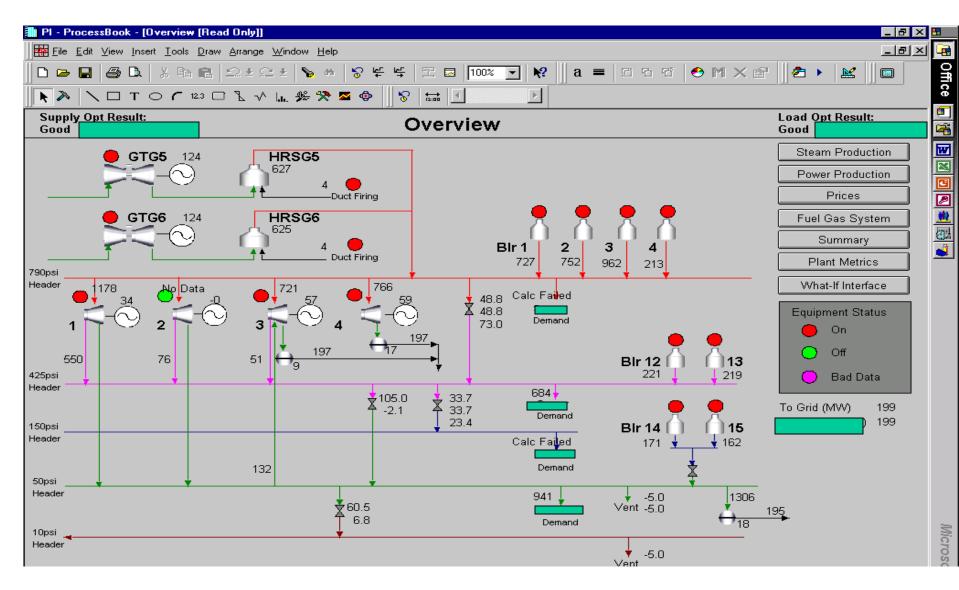
- Large, complex operation
- Multiple process variables and constraints
- Different and inter-related revenue streams:
  - Power, Steam, Hot water, Compressed air to host (contracted)
  - Power to AIS (provincial power grid)
- Difficult and poorly understood contracts
- Instrumentation availability -> quality Data
- Potential to improve customer relations with



Real Time project team

- Strong site commitment operations, maintenance and management -> communications reps
- Opportunity to educate employees about the bottom-line impacts they can have > 'business' training
- Project team from Gen, E-Bis, IS plus site personal



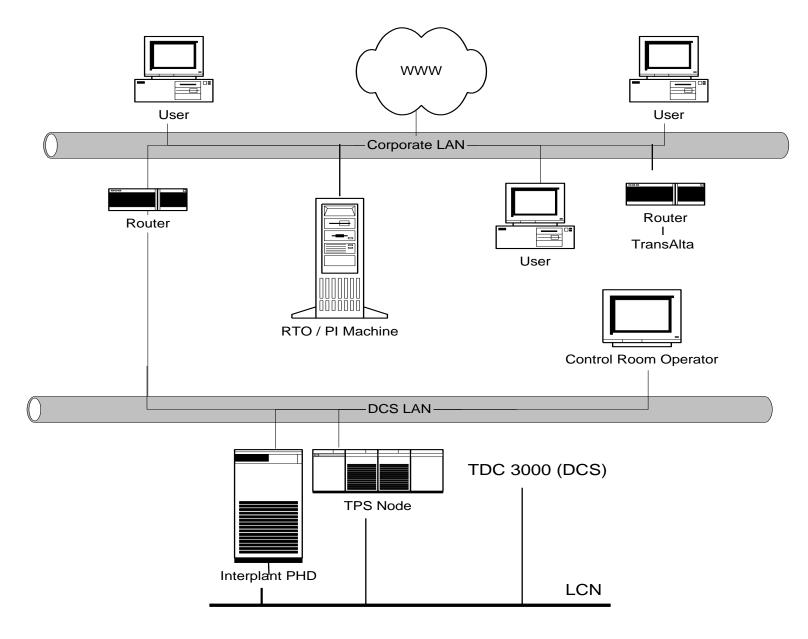

#### Trans∧lta

### Project timeline

Feb 1<sup>st</sup> Real Time site selection Vendor analysis and selection March 1<sup>st</sup> April 24<sup>th</sup> **Real Time Information strategy** ulletMay 11<sup>th</sup> Operations data to Vendor for analysis May 22<sup>nd</sup> Vendor on-site; initial models Sept 7<sup>th</sup> PI server installed • Sept 18<sup>th</sup> Functional Spec (plant models, KPIs) ulletOn-site data collection and PI installation Oct 9<sup>th</sup> • Nov 2<sup>nd</sup> Factory Acceptance Testing Nov 30<sup>th</sup> Installation at site + SAT Dec 21<sup>st</sup> Benefits Assessment 1 • Feb 18<sup>th</sup> Benefits Assessment 2 March 11<sup>th</sup> Real Time on-line  $\bullet$ 

#### Trans∧lta

### Overview – Optimizer screen




# **Trans** Generation – Optimizer Screen

| 📶 PI - ProcessBook - [Power Production [Read Only]] |                                                               |             |                  |                             |         |                           |              |             |       | < 🗄     |
|-----------------------------------------------------|---------------------------------------------------------------|-------------|------------------|-----------------------------|---------|---------------------------|--------------|-------------|-------|---------|
| Eile                                                | e <u>E</u> dit ⊻iew <u>I</u> nsert <u>T</u> ools <u>D</u> raw | Arrange     | <u>W</u> indov   | w <u>H</u> elp              |         |                           |              |             | _ 8 × | s 🖷     |
| Ĩ 🗅 🖻                                               | • 🖬 🎒 🗅 🕹 🖬 🔂                                                 | <u>s</u> ±c | <u>=</u> ±       | <b>%</b> ∺   <del>8</del> ∉ | 4 2 0   | ▼ N? a = s                | 5 6 6 M 🗙    | : 🖻 🛛 🕭 🕨 🛛 |       | Опісе   |
| <u></u>                                             |                                                               |             |                  |                             |         |                           |              |             |       | Ce      |
|                                                     |                                                               |             |                  |                             |         |                           |              |             |       |         |
| Supply Opt Result: Good                             |                                                               |             | Power Production |                             |         | Load Opt Result: Good 📃 🦰 |              |             |       |         |
|                                                     | Constraint                                                    |             |                  | Minimum                     | Current | Optimal Supply            | Optimal Load | Maximum     | 1     |         |
|                                                     | Power export to Grid                                          | MW          | <b>—</b>         |                             | 201.4   | 206.5                     | 208.0        |             | 1     |         |
| **                                                  | Tot Flue Gas ex Coke Blrs                                     | klb/hr      |                  | 0                           | 25      | 8692                      | 7871         | 10000       |       |         |
| >>                                                  | TG1 Power                                                     | MW          | <b>24</b>        | 10.0                        | 33.8    | 33.2                      | 33.2         | 36.0        | 1     | 빌       |
| >>                                                  | TG1 Throttle Flow                                             | klb/hr      | - 22             | 200                         | 1184    | 1200                      | 1200         | 1200        |       |         |
| >>                                                  | TG1 Steam Extraction                                          | klb/hr      | - 22             | 0                           | 555     | 600                       | 600          | 800         |       |         |
| >>                                                  | TG2 Power                                                     | MW          | - 22             | 10.0                        | -0.0    | -0.0                      | -0.0         | 36.0        |       |         |
| >>                                                  | TG2 Throttle Flow                                             | klb/hr      | - 22             | 200                         | No Data | 0                         | 0            | 1200        |       | 🛁       |
| >>                                                  | TG2 Steam Extraction                                          | klb/hr      | - 22             | 0                           | 76      | 0                         | 0            | 800         |       |         |
| >>                                                  | TG3 Power                                                     | MW          | - 22             | 7.0                         | 56.8    | 62.8                      | 63.0         | 63.0        |       |         |
| >>                                                  | TG3 Throttle Flow                                             | klb/hr      | - 22             | 300                         | 721     | 825                       | 825          | 825         |       |         |
| >>                                                  | TG3 Steam Extraction                                          | klb/hr      | - 22             | 50                          | 50      | 50                        | 50           | 300         |       |         |
| >>                                                  | TG3 Steam Induction                                           | klb/hr      | - 22             | 0                           | 138     | 37                        | 47           | 320         |       |         |
| **                                                  | TG3 Hot Water Temp                                            | Deg F       | - 22             | 198                         | 198     | 197                       | 193          | 205         |       |         |
| >>                                                  | TG3 PEW flow                                                  | USGPM       | <b>2</b>         | 8.0                         | 9.2     |                           | 9.4          | 13          |       |         |
| **                                                  | TG4 Power                                                     | MW          | <b>2</b>         | 7.0                         | 58.5    | 58.8                      | 60.0         | 60.0        | 1     |         |
| >>                                                  | TG4 Throttle Flow                                             | klb/hr      | <b>2</b>         | 300                         | 766     | 767                       | 782          | 864         |       |         |
| **                                                  | TG4 Hot Water Temp                                            | Deg F       | - 22             | 195                         | 197     | 196                       | 198          | 205         |       |         |
| **                                                  | TG4 PEW flow                                                  | USGPM       | - 22             | 8.0                         | 17.0    |                           | 17.9         | 20          |       |         |
| >>                                                  | GTG5 Power                                                    | MW          | <b>—</b>         | 80.0                        | 123     | 123                       | 123          | 127.0       |       |         |
| **                                                  | GTG5 Firing                                                   | klb/hr      | - 22             | 0                           | 65.6    | 65.5                      | 65.5         | 100         |       |         |
| >>                                                  | GTG5 Turbine Inlet Temp                                       | Deg F       | - 22             | 0                           | 1985    | 1985                      | 1985         | 1985        |       |         |
| **                                                  | GTG6 Power                                                    | MW          | <b>2</b>         | 80.0                        | 124     | 125                       | 125          | 127.0       |       |         |
| **                                                  | GTG6 Firing                                                   | klb/hr      | - 22             | 0                           | 62.3    | 62.3                      | 62.3         | 100         |       |         |
| **                                                  | GTG6 Turbine Inlet Temp                                       | Deg F       | - 22             | 0                           | 1985    | 1985                      | 1985         | 1985        |       |         |
| >>                                                  | 3E1 Hot Water Temp                                            | Deg F       | - 22             | 196                         | 196     |                           | 195          | 205         |       |         |
| >>                                                  | 3E1 PEW flow                                                  | USGPM       | - 22             | 0.0                         | 18      |                           | 0.0          | 30          |       | 1Ch     |
|                                                     |                                                               |             |                  |                             |         |                           |              |             |       | Wicrosc |



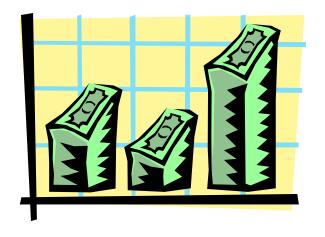
Network Overview





Software Vendor

Must Haves:


- Comprehensive products
- Strong customer references
- ≻ Low cost implementation
- ≻ Offer a what-if analysis tool
- Provide a Performance Guarantee





## TransAlta Operations Optimizer Package

- Optimizer model based on design calculations with real time inputs via PI
- Process Optimizer provides suggested controller set-points to achieve targets (open loop mode)
- Field inputs are compared to models and substitute data as required
- Output is in Dollars
- What-if models





- The system is configured to:
- Perform Plant Modeling
- Data Reconciliation
- > Performance Monitoring
- Real-Time Optimization, both open, closed loop
- Coordinated optimization between other systems
- Equipment selection optimization
- > What-if studies on-line and off-line
- Multi-time periods
- Interface through PI hence easy to maintain, upgrade and modify



## **Off-line Performance Monitor**

- Process data is automatically collected via PI and submitted bimonthly via the web.
- > The data is validated for consistency, accuracy
- Data is compared against a pre-defined design models CG turbines, steam turbines, boilers, HRSGs
- Performance parameters are calculated: efficiency, equipment deviation vs. original design conditions, actual cost of performance deviation.
- The measurements indicate how the equipment is decoding from its original operating ('as new') conditions.
- > Report issued to the plant for review.



**KPI's and Metrics** 

- Created a dedicated tool with PI to display plant specific metrics and KPI's – graphs, export features.....
- People, Reliability, Customer Satisfaction, EH&S, Earnings, EBIT, Equipment performance
- Manually update 40% rest uploaded from PI automatically
- ➤ KPI data will be live and visible to all at site



### TransAlta

# So what ?

- > Operations
  - Improved visibility of Operational data
  - Operational data directly converted into 'actionable' information
- Maintenance
  - Ability to view equipment performance vs. benchmarks
  - Moves in direction of predictive maintenance
- Management
  - Provides direct measurement of site benefits and revenue
  - Confidence that best business decisions have been made for present real time market conditions
  - Using the "What-if" models allow best business decisions to be tested prior to implementation
- Site and Host Benefits

# **Trans** Assessment and Measurement

- > Target set for minimum increase in capacity.
- Measured benefit was from:
  - On-going improvements in process operation (direct benefits)
  - One-off benefits from the optimizer

     (i.e.: open bypass valve or off-line Optimizer run)
- Two week assessment period
  - case studies and reviews,
  - tracking of accumulated benefits
  - Verification that Optimal condition was reasonable
- ➤ Results



Potential Issues

- PI as a bridge potential security issue Suggestions? Thoughts? Comments?
- Standards for measurements, screen development
- New Technology and Software What will survive?



Conclusions - site

- The project demonstrated the concepts were correct:
  - optimize plant equipment operation in Real Time
  - optimize plant equipment operation in unison
  - provide a direct assessment of business impacts of change (markets, equipment status, customer)
  - make consistent KPIs visible to all (Dashboards)
  - develop technology for rapid deployment
- Plan to move to Closed Loop mode this year



More Conclusions

- Evaluating other potential sites
- Standards for existing plants (KPI's, data collectors, performance monitors)
- Citrix apps Information Portal Anywhere, Any time by any one!



# Thank You

## TransAlta

where have been been

Keith\_Christianson@TransAlta.com (780) 892-5406