Weyerhaeuser Hawesville-Operations

Basic Care and Condition Monitoring

via

PI

Introductions

- Dennis Waldroup -
 - Senior Environmental Engineer for Hawesville Operations
- Gregg Jarboe -
 - Environmental Engineer for Hawesville Operations

Our PI System

- We have a PI 3.3 system
- \square It's ~24,000 tags.
- Most Users use the standard PI Process Book and PI -Datalink for 90% of their work.
- □ About 60% of the data is automatically retrieved from systems such as a DCS.
- □ The other 40% is manually entered data.

What We Needed

- Our H2 Machine had several opportunities in the areas of Production and Maintenance.
 - Lessening Machine Down Time due to Equipment Failure.
 - Lessening Machine Slow Down Periods due to Equipment that is in less than Ideal Working Condition.
 - Lessening Maintenance Cost by fixing equipment before it enters a higher stage of repair.

What We Needed

- Lessening Seal and Seal Water problems.
- Lessening Oil Related Problems.
- Lessening Scheduled Shut Down Lengths and Frequencies.

What We Needed

- All these opportunities revolved around the ability of keeping a great deal of equipment in its best working condition.
- □ In order to do this, it takes a great deal of Condition Monitoring and Analysis of the Collected Data.

Amount of Data

- Hawesville Operations Monitors
 - □ ~700 pieces of equipment on H2.
 - □ An average of ~4 Points of data per piece of equipment.
 - □ ~2800 points of manual data collection on H2 every week.
 - 5 control levels (O-RATS) per point.
 - □ ~14,000 calculations to monitor every week

Our Design

The Results

- Initial Increase in WR Backlog
- Leveling of Problems
- Lessened Unscheduled Down Time
- Lessened Slow Down Periods
- Lessened Shut Down Lengths
- Lessened Shut Down Frequencies
- Lessened Maintenance Cost

Example of Results

- □ System Cost ~ \$60,000
- □ A Pump Failure Cost (Down Time Only) = \$180,000
- System Paid for itself 3 times with 2 weeks worth of data.

Environmental Issues

- Visual Inspections
 - □ Oil Leaks
 - Chemical Leaks
 - Water usage

Next Steps

- Using this type of system in other areas of the Mill Site.
- Need to lessen time of deployment
- Need to lessen cost of deployment
- Need to lessen Upkeep Time

- Currently Graphs are created in Excel with PI-Datalink.
 - Maintenance for Changes
 - Statistical Analysis Very Manual.
- Future Graphs will be made using PI-SQC.

- Current Database is in Access and stores a lot of the data such as:
 - Equipment Name, Location, Model, Picture
 - Personnel Information
 - Routing Information: Frequency, Personnel, Route Path
- Ideal for PI Module Database

Current Design

- Current Alarm Settings and Alarm Statuses are kept in PI.
- These PI Tags are named via convention, but still hard to navigate through. (Manual)
- Ideal for PI Module Data Base Aliases.

Equipment Number 913-2420

Vibration 0.015 Temperature 100 Vibration 0.100 Temperature 200 Vibration 0.015 Temperature 110 Vibration 0.020 Temperature 100

Seal Cond. Good

- Calculations are all done via Excel Sheets (Manual)
- Ideal for PI-ACE and PI Module Data Base Aliases

