

CONTAC Engineers Ltda. Santiago, Chile

PATTERN ANALYSIS FOR PROCESS DEVIATIONS EARLY ALERT AND CAUSE-EFFECT RELATIONSHIPS EVALUATION

CONTAC

PRESENTATION OUTLINE

- BACKGROUND: NEEDS IN PROCESS SUPERVISION. THE PI-SCAN APPROACH
- OFF-LINE ANALYSIS
- ON-LINE APPLICATIONS
- SCAN PROJECT STATUS AND FUTURE
 DEVELOPMENTS

BACKGROUND

> The Needs

Two major PI users, a Copper Mining Operation and a Gas Plant:

- Use of historical information for the characterization of plant behavior patterns and the analysis of cause-effect relationships
- Use of pattern parameters for:
 - Prediction of quality indicators and operational performance
 - Estimation of process variables in time (especially those which are hard to measure)
 - Early detection of abnormal operational conditions and equipment failures

CONTAC

BACKGROUND, THE NEED

Input Material Characteristics

Relationships between Processes

Complex equipment I/O relationships

<u>Hard Links</u>: Physical Interconnections between equipment <u>Soft Links</u>: Process Control Loops and Operating procedures

- Large number of process variables
- Complex cause-effect relationships
- High co-linearity and redundancy
- Different (time based) Operation Modes: drift, noise, start-up, set point changes, disturbances, etc.

GOAL: To characterize structural relationships between process variables and time series frames.

BACKGROUND, THE NEED

• Real Processes are both, Multivariable and Multi-stage:

Kirosoft Excel - todos hasta miercoles.xls											
📳 archivo Edición Ver Insertar Eormato 👥 Nientas Datos Ventana El El PI-SMT 2 Scan 🛛 Escriba una pregunta 🔹 🗸 🗸											
D) ☞ ■ 금 戦 ● 3. ♥ 3. 助 ■ • ♂ - • - ● ● Σ - 13 計 科 / 組 移 100% ▼ ♡ _										
	A6 🔻 🏂 32										
	A	В	С		D	E	F	G	Н		
4	Descripción	Flujo de Ngas to Reformer	H2 Ga Alimentac Reforma	n al A	CO2 Gas mentación al Reformador	N2 Gas Alimentación al Reformador	CH4 Gas Alimentación al Reformador	C2H6 Gas Alimentación al Reformador	C3H8 Gas Alimentación al Reformador	H2 Gas Reformado	C Re
5	tiempo	2EIC1208 PV	2AI1160	A1 1	AU1160-3A2	2AI1160-3A3	2811160-384	2AI1160-3B1	2AI1160-3B2	2AI1 00-07	
6	32	96786.1743	1.7797	514	0.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
	~ ~ ~									191542	14
8	96	96772.0207	1.7797		0.20997583	1.31984815	93.109287	4.72945572		73 .+ 91042	14
9	128	96760.2796			0.20997583	1.31984815	93.109287	4.72945572		73.491542	14
10	160	96716.2949	1.7797		0.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
11	192	96841.7741	1.7797		0.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
12	224	96772.941	1.7797		0.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
13	256	96788.9355			0.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
14	288	96743.1746			0.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
15	320	96809.4043			h 20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
16	352	96885.7266			0 .0997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
17	384	96841.9645	1.779	9514	20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
18	416	96785.1593	1.7797	514	.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
19	448	96835.7123	1.7797	514	J.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
20	480	96772.6874	1.7797	9 14	0.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
21	512	96774.1154	1.7797	95 4	0.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14
22	544	96806.4532	1.7797	95	0.20997583	1.31984815	93.109287	4.72945572	0.19997699	73.491542	14 🗸
I I I I I I I I I I I I I I I I I I I											
Listo	1									NUM	

Multi-stage:

- Drift
- Noise
- Seasonal changes
- Control Settings, etc.

To be able to recognize deterministic & stochastic frames and events

Multivariable:

- Co-linearity
- Redundancy
- Cause/Effect

To be able to capture the Plant Structure

CONTAC

The (SCAN-PI) Goal

BACKGROUND

ΡΙ

> The PI-SCAN Approach:

Data Link + SCAN (Excel add-in with a complete set of advanced data analysis tests and reports)

Models

RT and historical Process data ----

SCAN calculation modules (libraries), running in **PI-ACE**

Statistical indexes, estimators, predictors, deviations, alarms, etc.

OFF LINE

Use of historical information for the analysis of cause-effect relationships and plant behavior patterns

ON LINE

Use of pattern parameters for early detection of abnormal Operational Conditions, quality predictors and Estimators for process variables.

SCAN-PI, OFF-LINE ANALYSIS

Process Data Analysis: Off Line Analysis

Data Link+SCAN (Excel add-in with a complete set of advanced data analysis tests)

Use of historical information for the analysis of cause-effect relationships and plant behavior patterns

3	Archivo Edici	ión ⊻er Insertar Eorma	ato <u>H</u> erramientas Da <u>t</u> os Ve <u>n</u> tan	na <u>PI PI PI-S</u> MT <u>?</u> ;		Escriba una pregunta 🛛 👻 🗕
	🔊 🖬 🔒 👒	😂 🖪 🚏 👗 🖻 🛍 • <	లి బారాలు 🍓 Σ 📲 🛃 👬	100% 💌 🕄 🚬	Data Filtering	g •
	CR11		96875		Build Model	VFA
	A	В	С	D	Test Model	 PLS
		1			D3_Index	Save Models
	Descripción	Flujo de Ngas to	H2 Gas Alimentación al	CO2 Gas Alimenta	Statistical Ana	alysis Load Model
4	Description	Reformer	Reformador	Reformador	VFA Online	nauor
4						
5	tiempo	2EIC1208.PV.NUL D	2AI1160-3A1.DHLAB.NUL_M	2AI1160-3A2.DHLAB	NUL M 2ALL	160-3A3.DHLAB.NUL M (
6	3778		1.4900001		0000003	1.169999957
7	3779		1.49000001		0000003	1.169999957
8	3780		1.49000001		0000003	1.169999957
9	3781	95951.16406	1.49000001	0.20	0000003	1.169999957
10	3782	96652.96875	1.49000001	0.20	0000003	1.169999957
11	3783	95671.875	1.49000001	0.20	0000003	1.169999957
12	3784	96073.04688	1.49000001	0.20	0000003	1.169999957
13	3785	95991.79688	1.49000001	0.200	0000003	1.169999957
14	3786	96717.96875	1.49000001	0.200	0000003	1.169999957
15	3787	96105.54688	1.49000001	0.200	0000003	1.169999957
16	3788		1.4900001		0000003	1.169999957
17	3789		1.4900001		0000003	1.169999957
18	3790		1.49000001		0000003	1.169999957
19	3791		1.49000001		0000003	1.169999957
20	3792		1.49000001		0000003	1.169999957
21	3793		1.4900001		0000003	1.169999957
22	3794		1.49000001		0000003	1.169999957
23	3795		1.4900001		0000003	1.169999957
24	3796		1.49000001		0000003	1.169999957
25	3797	95991.79688	1.49000001	0.20	0000003	1.169999957

CONTAC

SCAN-PI, OFF-LINE ANALYSIS

Process Data Analysis: Off-Line Analysis

CONTAC

ANALYTICAL TESTS (some of them...)

Wavelet Analysis Linear transformation which can be used to obtain the decomposition of given signal into different time-based scales (or "frames", or "shapes").

Uses:

- Time series data reduction (it can compress redundant data)
- Outlier detection in sampled data
- Missing data reconstruction
- Detail-Based Signal Analysis: Selective filtering and analysis of time series shapes
 Noise Filtering
 - Detection of seasonal shapes
 - Detection of signal drifts (weariness?, need of calibration?, other?)

WAVELETS: EXAMPLES AND DEMONSTRATIONS

 Noise filtering and Outlier elimination as a prior tool before any multivariate analysis. Signal trends are represented in a better way and erroneous variability sources are avoided.

CONTAC

Model identification improvements can be obtained (better RMS error):

ANALYTICAL TESTS (some of them...)

Dynamic Disturbance Detection Index: Statistical Univariate tool which is able to detect abnormal dynamic behavior, by analyzing the residual between a process signal and its reference over a sliding time-window.

Two possible analysis modes:

- <u>Univariate Analysis</u>: Reference is the signal moving mean or the signal moving median.
- <u>Model Based Analysis</u>: Reference is a Control loop set point, another process variable or a desired dynamic behavior (1st or 2nd order transfer function, other)
- <u>Uses</u>: Control Loop Assessment Process Variable Upset detection Changes in Noise/Signal ratio External disturbance detection

D3: EXAMPLES AND DEMONSTRATIONS

1) Control Loop Assessment:

CONTAC

2) Detection of disturbances in process variables, regardless noisy behavior and also updating changes in their dynamics.

CONTAC

ANALYTICAL TESTS (some of them...)

Variability Factor Analysis: <u>Process Structure Representation</u>

VFA

Being "**X**" the process variables $(X_1, X_2, X_3,..., X_n)$, **VFA** determines pseudo variables "**V**" $(V_1, V_2,..., V_m, m << n)$, such that $V_i = f_i(X)$, where "**V**" represents the "directions" of **Maximum Variance** in Process Data.

- The resulting Pseudo-Variables (V) are:
 - Non correlated
 - Non redundant
 - They contain Independent information
- VF can be characterized, then: process behavior can be also characterized
- Pattern (structure) can be associated with certain Process Behavior
- Structure changes are (often) detected before individual changes in process variables, allowing early detection of process changes: upsets, quality alerts, outside disturbances, etc.

VFA: EXAMPLES AND DEMONSTRATIONS

1) The Loading Plot is able to show simultaneously information about correlation, signal independence and influence in process variability for every process variable included in the analysis.

VFA: EXAMPLES AND DEMONSTRATIONS

2) The Score Plot defines the statistical boundaries for desired (or normal) operation of the entire process. Thus, it is possible to define the membership of the present behavior to any desired operational condition.

CONTAC

VFA: EXAMPLES AND DEMONSTRATIONS

3) Therefore, it is also very easy to detect an abnormal condition, when the data scores begin to appear outside the confidence elliptical boundaries.

 Process operation can vary according to different factors, but not necessarily that variation is considered as a "fault".

VFA allows to define different valid operation ("clusters") points inside the ellipsis, and to characterize them according to input sources, etc.

5) "Excursions" (changes) in Operation Points can be also characterized, and used for latter identification of "causes".

CONTAC

VFA: EXAMPLES AND DEMONSTRATIONS

6) The trend of a Variability Factor (VF) aggregates the information of several process variables. It also represents an independent, non correlated piece of information.

T² (or "Hottelling") Index aggregates the variability information for the whole plant in just one index.

Since Structures are more sensitive than individual variables, T² can be used for process abnormalities early alert.

CONTAC

ANALYTICAL TESTS (some of them...)

PLS

Projections

Cause-Effect (Structural) Representation Models

Being "**X**" the process variables $(X_1, X_2, X_3, \dots, X_n)$ selected as "cause" or process drivers

Being "**Y**" the "quality" variables $(Y_1, Y_2,....)$ selected as the effect variables

Reduction to underlying structure

PLS Tools

Reduction to underlying structure

Causes that most accurately describes the **effect** in the (variability of the) quality variables

Projections

Cause-Effect (Structural) Representation Models

Some examples of practical applications:

Process Variable Estimation:

- Variables which are difficult to measure, ex.: "weariness", "sheet break risk alert", etc.
- Soft Sensors:
 - Variable values between Laboratory Tests
- Predictors:
 - EOB, End of Batch quality predictor
- Cause-Effect scenario analysis
 - Expected quality variability under different process variables values

SCAN PI

CONTAC

PLS: EXAMPLES AND DEMONSTRATIONS

1) Efficient Model Structure Identification: The method not only gives information about the structure of the model, but also about the RMS Prediction error in time.

2) Additionally, it is possible to supervise the prediction ability of the model which it is been used in On-Line operation. The data score plot give that information by setting confidence limits for the model.

SCAN-PI, ON-LINE APPLICATIONS

CONTAC

- Tests are managed as ACE calculations
- Test inputs are "PI TAG's"
- Test outputs are "PI TAG's"
- Test parameters are maintained in PI MDB modules

This inherently modular architecture allows for:

Test enable/disable:

- Run Test₁ whenever, or TAG Value is or..... GT than
- Run a Test₂ every [min]

Multi-test Linking

Test₁(input) equals Test₂(output)

SCAN-PI, ON-LINE APPLICATION

PIACE (MDB) Model, ex.: D3 Index

MDB Structure

	🍓 Sub-Modules 🍐	🗞 PI Aliases [🗿 PI Properties 📔		
	▲PIAlias Name	Tag Name	Server	Snapshot Value	Snapshot Time
Online D3_Index D3_Index_1 D3_Index_1 PLS	 On_off Out1 Tag1 Tag2 Tag_Log 	On_Off_D <u>3</u> D3_Index SINUSOID1 pls_c2 D3_Log	100,100	Shutdown	4/9/2003 6:58:02 PM 4/9/2003 6:58:02 PM 5:45:00 PM 10:29:57 AM 4/28/2003 3:41:35 PM
E PLS_1 INPUT WEIGHT	🔏 Sub-Moo	1 *	PI Aliases Value	Datatype	
		-	4 r 10 0 3	Double D3 Index Pl String	Properties

- Many instances can be defined for each test
- Specific parameters can be defined for each instance
- Specific I/O Tag references can be defined for each test
- Trigger can be a Tag reference signal or a fixed time period

SCAN-PI, ON-LINE APPLICATION

PIACE (MDB) Model, ex.: PLS Model

MDB Structure

CONTAC

ON-LINE APPLICATIONS

EXAMPLE

CONTAC

The relative influence of every process variable in a certain output can be supervised On-Line by using an inteligent PLS Model actualization:

SCAN-PI, FAQ

• How are the model parameters saved?

They are saved as Excel Worksheets. Therefore it is very simple to identify them and use them for further analysis. The same Worksheets can be used as input for an On-line application.

Is it possible to model the process dynamics?

Yes, by using delayed values of the sampled process variables.

What about Batch Processes?

A common technique called "unfolding" allows Batch Process analysis, by adding a new dimension of the data set (TAG-Time Matrix) related to the the Batch Number (Batch Run).

How is it possible to model a non-linear process?

When linear models are mentioned, we are talking about linear-in-the-parameters models. The use of calculated variables as model inputs (ex: (Pressure)²/Temperature) allows the modeling of non linear relationships.

What about graphic representation of the on-line analysis?

Test's outputs are sent back to PI, model parameters are managed in PI-MDB. Thus: all the PI power can be used.

What about on-line deployment in DCS's or PLC's

Model equations from the Off Line analysis can be implemented using calculation capabilities of the Control Systems, otherwise, ACE calculations can be sent back through PI.

• More questions?: please e-mail us

CONTAC

FINAL REMARKS

- PI Infrastructure provides an integrated environment for off-line analysis and on-line deployment of advanced process analysis.
- Infrastructure allows for a continuous improvement of SCAN capabilities, since new TEST's can be similarly added to the libraries.
- Openness of the working space: both Off-line and On-line analysis structures allow the combination of Tests, Models and ad-hoc programming

CURRENT STATUS

OFF Line: V1.0

On Line (ACE libraries): Beta

- D3 Test (stability analysis, control loop assessment)
- PLS projection model, estimators, soft-sensors, predictors

FUTURE DEVELOPMENTS

 Addition of new ACE Test's: Wavelet, Specific Test's for <u>failure</u> <u>early detection</u>, Batch models.