

# Yields reconciliation using Sigmafine in an agile refinery

Nicoletta Aloi - IPLOM





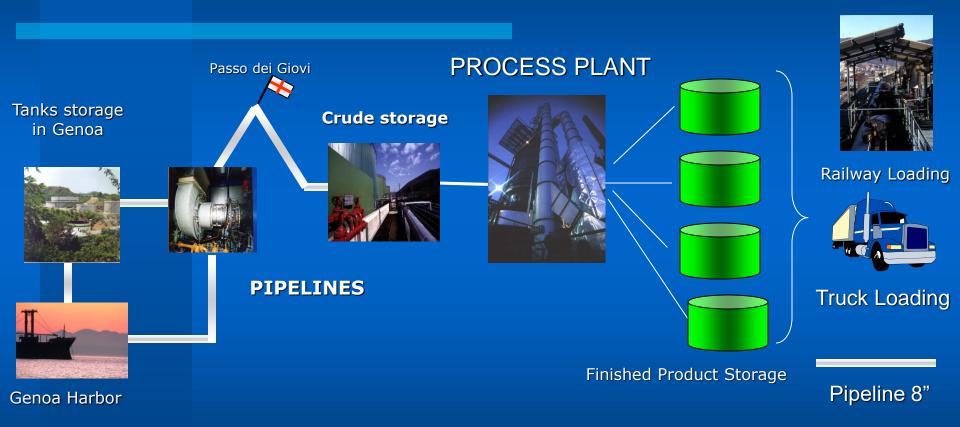
#### Agenda

- 1. Presentation of IPLOM refinery
- 2. Yield reconciliation objectives
- 3. The project
- 4. The model
- 5. Analysis of reconciled data
- 6. Achieved results
- 7. Future developments





## Refineries in Italy


**IPLOM** 







## **IPLOM Refinery**







#### Refinery Data

- Has refined and delivered oil products in Busalla since 1943
- Productive capacity: 45.000 bbl/day
- Refines Diesel oil, low sulfur fuel oils, bitumen
- Total area: 126.000 m2
- Tanks: 56
- Storage facilities: 300.000 m3
- 8" and 16" Pipelines: 25 Kilometers



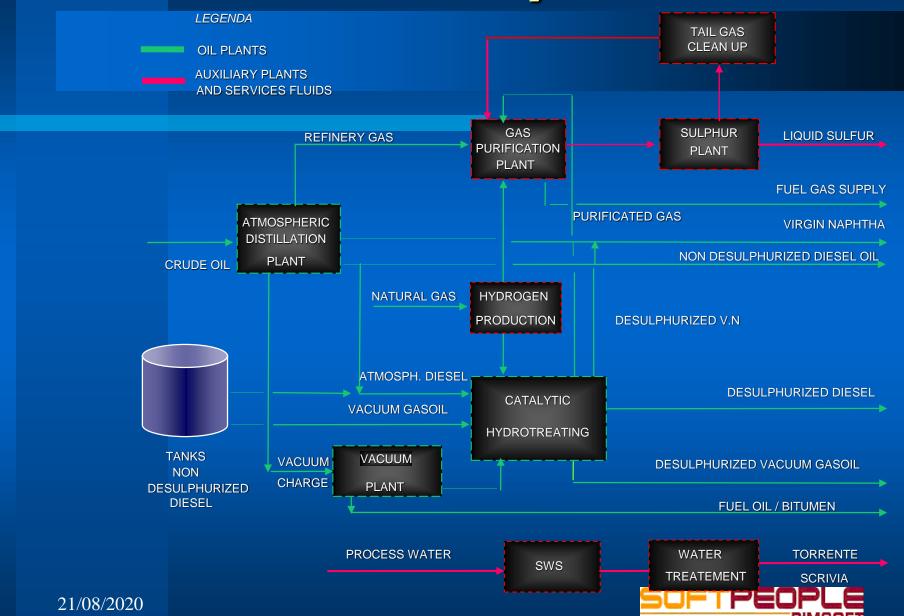


#### Refinery Data

- Favorable logistic location:
  - close to the Padana Valley
  - connected to the harbor (8" and 16" pipelines)
  - railway loading (equivalent to more than 80 trucks/day)
- employees: approx. 200 people
- approximately 200 people daily employed in the allied activities
- more than 600 allied






### Plant capacity

- Atmospheric vacuum distillation: 45.000 bbl/day
- Diesel oil and fuel oil purification 23.000 bbl/day
- Gas and water purification, sulfur recovery 345 bbl/day
- Electric energy and steam production (cogeneration)
   5 MWe + 8 MWt



#### IPLOM Refinery







#### IPLOM: an agile refinery

- Efficiency, agility in taking the opportunity of business
- Wide range of customers to be satisfied
- Many operating modes
- Wide range of products
- 110 crude switching (running plans) per year
- Average length of a campaign: 2,5 days
- Performance during a crude switching: 4 hours





#### Yields reconciliation objectives

- Operations:
  - Calculation and Presentation of KPI
  - Real-time evaluation of plant performances
- Accounting:
  - Aggregation of campaign results
  - Accuracy of data from the plant floor
- Engineering:
  - Verification of theoretical yields
  - Evaluation of upsets and performances during a crude switching





#### Previous situation

- Material balance calculation was done daily using an ad-hoc application built in Excel
- Lack of a data infrastructure able to collect and distribute plant data
- Lack of flexibility in modelling different plant configurations
- Strong involvement of personnel
- A good redundancy of measures, about 120%





#### Project guidelines

- Replace ad-hoc tools with a product-based solution
- Flexible plant configuration ->
   dynamic reconciliation model
- Completely automatic hourly reconciliation mode
- Archiving/presentation of results
- Integration with accounting system





#### The choices



#### PI

Real-time data infrastructure



#### Sigmafine

- Data reconciliation
- Dynamic model management





#### PI-ProcessBook/PI-DataLink

- Integrated data presentation
- Distribution/analysis of results





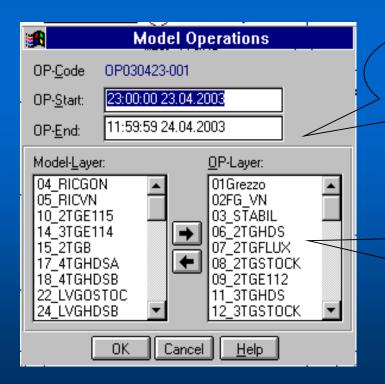
#### Project management

- Collaborative approach
- Strong involvement of refinery personnel
  - process engineer for model development
  - automation engineer for DCS integration support
- Local distributor (Pimsoft) for product and integration services
- Duration: 3 months





#### Model design


- Suitable for frequent and automatic reconciliation (hourly)
- Able to represent all possible plant configurations
- Tanks and movements not included
- Mass balance
- All compensations/validations solved at DCS/PI levels



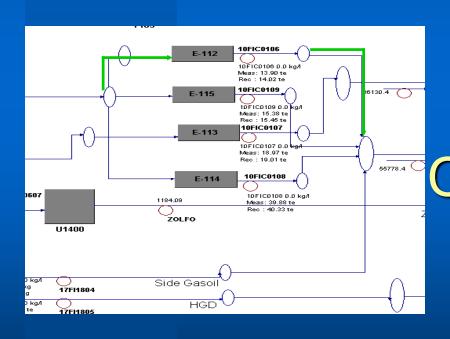


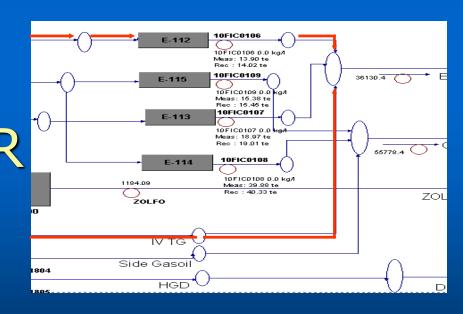
#### Dynamic modelling

- Model structured on many "layers" (around 50)
- A running plan is represented by a subset of layers



Running Plan start/end times

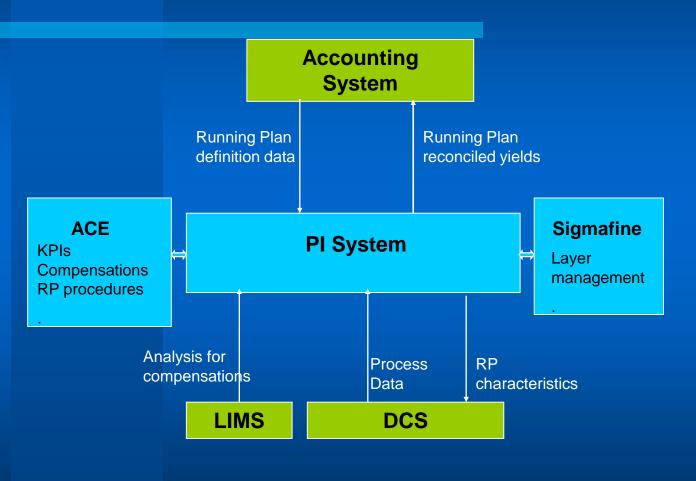

Layers
enabled in the
current
running plan






### Layers management

Example of two different layers combinations in the model









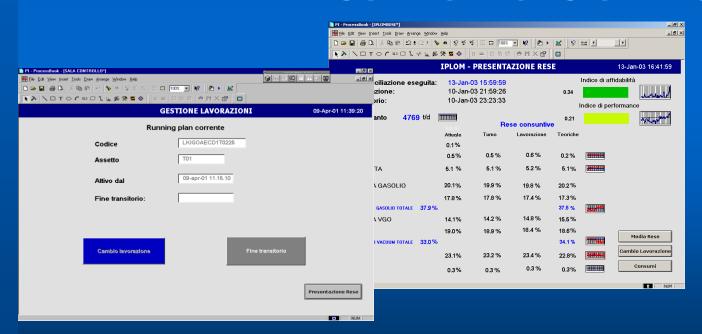

#### Functional architecture



Yields and KPIs presentation






Control Room
PB Running Plan
Manager

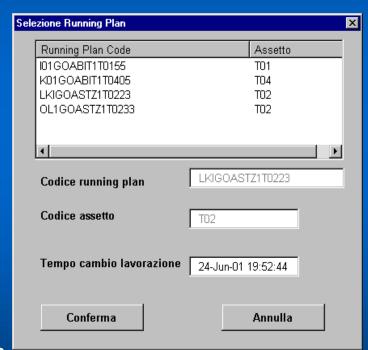




#### Running Plan manager/1

- Located in control room
- Selection of new running plan from accounting DB
- Declaration of running plan (campaign) change



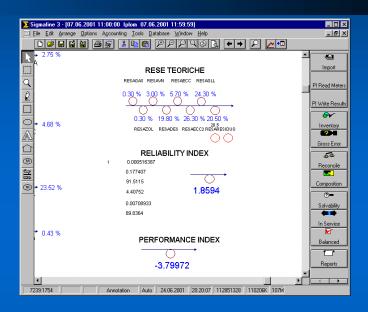





#### Running Plan manager/2

#### Automatic actions triggered by running plan manager

- Start Running Plan
- Set Sigmafine model layers according running plan configuration
- Download theoretical data from Accounting System
- Update theoretical density/viscosity of products for compensation of DCS flow rate measures
- End Running Plan
- Aggregate running plan reconciled data
- Update Accounting system

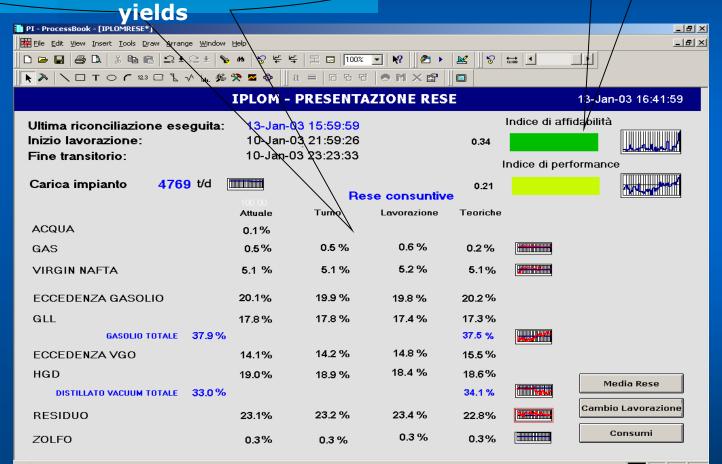







## Quality indexes

 Automatic reconciliation requires **KPIs** to provide an immediate and simple indication about the "goodness" of the reconciled data




- Reliability Index -> reliability of reconciled yields related to theoretical ones
- Performance Index -> indicates if the plant is producing more valuable stuff compared to the theoretical performance

## Yields and KPIs presentation

current/shift/running plan reconciled vs. theoretical

Running Plan KPIs



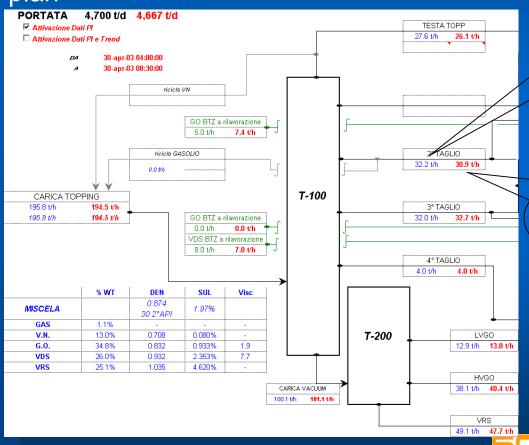


#### Plant monitoring/1

Early morning meeting plant situation report

Theoretical yields from running plan

| RESA TOPPING           |              |          |  |  |
|------------------------|--------------|----------|--|--|
| Prodotto               | Portata (Vh) | Rese (%) |  |  |
| Acqua                  | 0.9          | 0.5%     |  |  |
| Gas                    | 0.4          | 0.2%     |  |  |
| Virgin Naphtha         | 7.2          | 4.0%     |  |  |
| l taglio               |              |          |  |  |
| Il taglio ad U.1700    | 19.1         |          |  |  |
| Il taglio a eccedenza  | 16.2 38.4    | 21.2%    |  |  |
| Il taglio flux         | 3.1          | 43.2%    |  |  |
| III taglio ad U.1700   | 10.9         | 20.3%    |  |  |
| III taglio a eccedenza | 25.7         | 20.576   |  |  |
| IV taglio (GOP)        | 3.0          | 1.7%     |  |  |
| LVGO                   | 7.8          | 4.3%     |  |  |
| HVGO                   | 47.9         | 26.5%    |  |  |
| VRS                    | 38.3         | 21.2%    |  |  |
| Totale (Vh)            | 180.5        | 100.0%   |  |  |


|                    | R           | ESA RAFFINERIA |                               |
|--------------------|-------------|----------------|-------------------------------|
| Produ              | otto        | Portata (t/h)  | Rese (%) spec marcia          |
| Acqua              |             | 0.9            | 0.5%                          |
| Gas                |             | 1.0            | 0.6% V.N 5.6                  |
| Virgin Naphtha     |             | 10.8           | 6.0% GOLL 17.8                |
| Gasolio Totale     | LGO+ECC     | 78.8           | 43.7%   GO ECC 22.9           |
|                    | SIDE GASOIL | 0.0            | : 0.0% : !VGO ecc 12.0        |
| LVGO ad ecc.       |             | 0.0            | 0.0% <sub>6.49</sub> HGD 17.8 |
| HVGO ad ecc.       |             | 11.0           | 6.1% 6.1% VRS 22.9            |
| HGD                |             | 35.4           | 19.6%                         |
| VRS                |             | 41.4           | 22.9%                         |
| zolfo              |             | 1.2            | 0.7%                          |
| Totale (t/h)       |             | 180.5          | 100.0%                        |
| GO a R-1701/R-1702 |             | 22.1           | 12.3%                         |
| VDS a R-1702       |             | 18.2           | 10.1%                         |





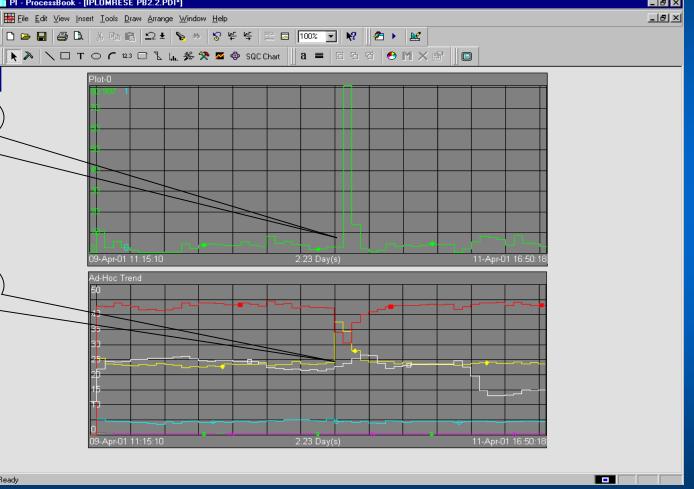
#### Plant monitoring/2

Running plan



Theoretical yields from running plan

Reconciled yields from running plan

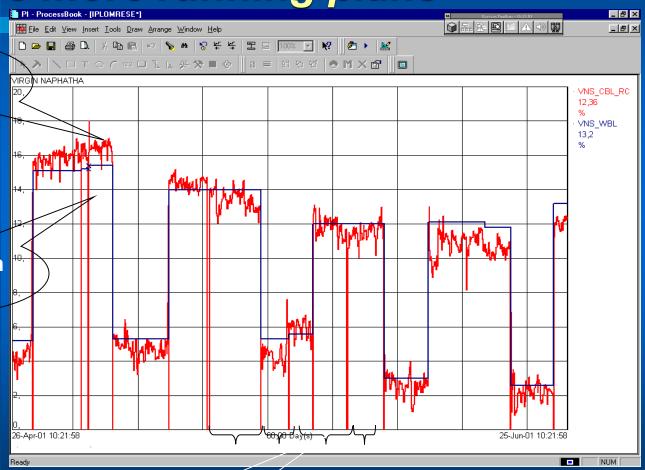





#### Upset identification/evaluation

Reliability Index

> - gasoil + residual

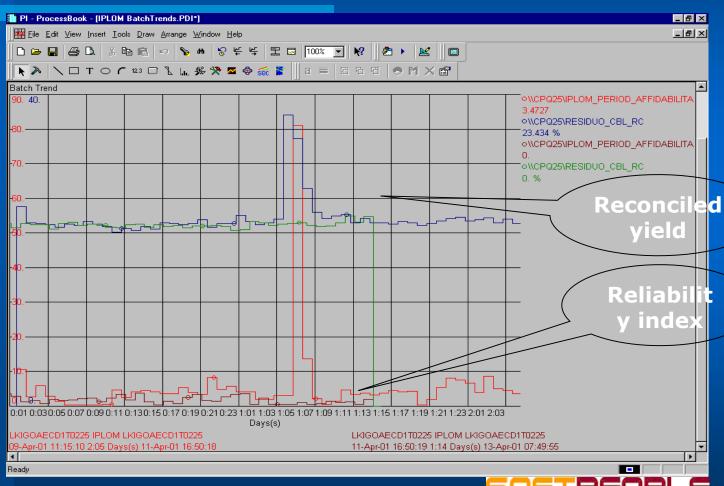



#### **IPLOM**

Reconciled vs. theoretical yields across more running plans

Reconcile d yields

Theoretica I yields




Running plans





## Comparing two running plans of the same campaign





#### Achieved results

 The use of PI and Sigmafine enabled the refinery to achieve better control and knowledge of its performances

 KPIs and yields are calculated and available in <u>real-time</u> giving an homogeneous trend of the production to all refinery people (from operating people to the production manager)





#### Achieved results

A posteriori analysis and comparison of reconciled and theoretical data lead to:

- Clear reduction of transition time especially during the change of production
- Gasoil-diesel yields improvement of about
   1%





#### Future developments

- Daily Complete refinery model in progress
  - inclusion of tanks and fiscal movements
  - integration with hourly yields model
- Use of Composition tracking to evaluate the crude tanks composition
- Sigmafine4 and PI-Application Framework
  - Migration of dynamic reconciliation to PI-AF
- PI-ICE
  - distribution of yields and KPIs cockpits

