

Using PI-ACE & PI-MDB in applications for Hydro Energy Production

- Brascan Power
- PI Deployment Justification
- Functional Architecture
- ACE/MDB Applications
 - Hydrology Calculations
 - Capacity Calculations
 - Meter Validation
- Lessons Learned
- Questions

Brascan Corporation

Brascan owns, manages and builds businesses which generate sustainable cash flows

- Focus in 3 core business sectors:
 - Real Estate
 - Power Generation
 - Financial
- Holds investments in the resource sector.
- Invests in high quality assets at attractive values.

Brascan Power Corporation

Brascan Power is the largest independent generator and distributor of electricity in Ontario and Quebec.

Power Production Base (Installed Capacity by Region)

- Brascan's energy operations are among the lowest cost producers of electric power in North America.
- Operations include:
 - 37 hydroelectric plants on fourteen river systems in Ontario, Quebec, British Columbia, Maine, New Hampshire and Louisiana, with a capacity of 1,636 megawatts.
 - A combined cycle co-generation facility with a capacity of 110 megawatts.
 - Key interconnections and power transmission facilities in central Canada and the U.S. northeast.
 - Five hydroelectric projects under construction in British Columbia, Ontario and Brazil totalling almost over 150 MW.

Agenda

Marketing Unit's responsibility:

- Optimize value of BPC generation portfolio
- Support growth strategy
- Assist affiliates with supply requirements

The Operating Unit's responsibility:

- Manage operations
- Prepare and implement 20-year capital program
- Manage Health & Safety
- Manage Environment
- Administration of the business

- Brascan Power
- PI Deployment Justification
- Functional Architecture
- ACE/MDB Applications
 - Hydrology Calculations
 - Capacity Calculations
 - Meter Validation
- Lessons Learned
- Questions

PI Project Justification

Corporate Objectives

- Standardization
 - PI already used at Great Lakes and Maine
 - Standard interfaces and Batch Files
- Integration of new acquisitions
- Data volume!!!
- Lower TCO
 - Shared applications
 - Support (esp. small plants)
 - DataWarehouse for Business Processes & BI

PI Project Justification

- Operations Objectives
 - I³ Integrate Information Islands
 - Weather & hydrology
 - GS operations
 - Metering/billing
 - Other production centers
 - Automated Reporting
 - Bad or missing data
 - Ease of use

- Brascan Power
- PI Deployment Justification

Functional Architecture

- ACE/MDB Applications
 - Hydrology Calculations
 - Capacity Calculations
 - Meter Validation
- Lessons Learned
- Questions

Functional Architecture

- Core operations
- Simplified data flow

- Brascan Power
- PI Deployment Justification
- Functional Architecture

ACE/MDB Applications

- Hydrology Calculations
- Capacity Calculations
- Meter Validation
- Lessons Learned
- Questions

High Falls

$$Volume = coef \ X^{0} + (coef \ X)(level) + (coef \ X^{2})(level^{2}) + (coef \ X^{3})(level^{3})$$

$$Natural \ inflow_{T=x} = \Delta Vol - Q_{in} + Q_{turbined} + Q_{spill}$$