SCHOOL Project

Substation & Circuit History Of Operational Loads

"It's where we go to learn about our system."

SCHOOL - Key Business Drivers

Quality Load Data Is Critical for the Business

- Required to Manage Peak Demand
 - Forecast for long-term planning
 - Day-to-day load balancing
 - Key variable to Distribution Capital Budget
- Failure to have access to quality data can lead to overloads and outages
- Existing Load Data Systems:
 - □ Are legacy systems at the end of their useful life
 - Need external expertise for support
 - Do not comply with PacifiCorp IT and Technology Blueprint Standards
 - Have become "silos" for data
 - Cannot be integrated into the overall PacifiCorp information backbone
- Business Processes Are Inefficient, Leading to Delayed Tasks and Poor Quality Data

Project Objectives

- Enable Transition Plan Efficiencies
- Replace SUBVIEW, EMS-Sigma Database and Hand-Held Data Collection Devices
- Provide Load Data and Analytical Tools Across PacifiCorp from a Central Historian Application
- Improve or Eliminate Manual Processes Supporting Load Studies, Load Forecasting, Infrastructure Planning, and Substation Inspections
- Facilitate Planning and Analysis Functions With Consistent Load Data Within PacifiCorp

Key Project Deliverables

The primary deliverable is the implementation of SCHOOL and will include:

- Develop a multi-phased solution strategy
- Replace existing "SUBVIEW" system with new load data management system.
- Replace "Handheld" data collection devices for capturing load data and maintenance information
- Replace EMS-SIGMA load data historian
- Integrate with MV-90 for additional load data
- Enhanced analytical capabilities utilizing load data sources.

Multi-Phase Vision

The SCHOOL Curriculum for better load data is broken up into three phases:

Phase 1	Phase 2	Phase 3
Business Case & Basic SCHO	Advanced SCHOOL	Future SCHOOL
Scope Strategy & Business Case Implement OSI-PI Infrastructure Perform Legacy System Data Migration & EMS/SIGMA Transition SUBVIEW Replacement Evaluate & Implement Hand Held Solution Implement Hourly Load Peak at 110 Substations (Critical) Develop Data Expansion Criteria Quality Standards Integrate with Legacy SCADA & MV-90 OSI Solutions • PI DataStorage • PI Module Database • PI Batch • PI Totalizer • PI ACE • PI Process Book • PI DataInk • PI Data Access Pack	Management and Hand Held Solution • Expand Data to Remaining Substations and Circuits • Incorporate Weather Data and	Expand Asset Management Reporting
PI Interfaces PI Handheld Terminal		

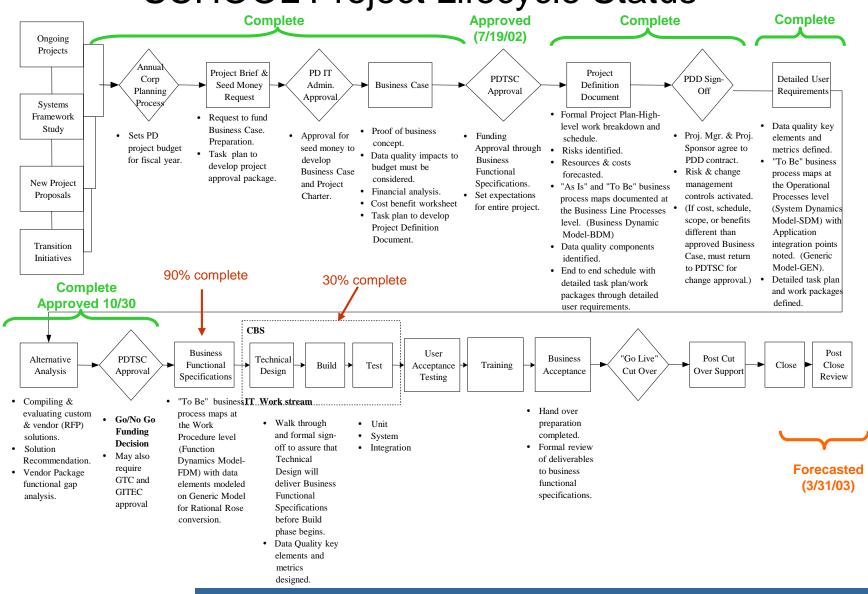
Data Management & Infrastructure

- Frontline Program
- ERP (SAP)
- GIS
- Metering

Phase 1 Scope

Scope:

- Strategy & Business Case
- Implement Load Data Management System Infrastructure
- Perform Legacy System Data Migration and EMS/SIGMA Transition

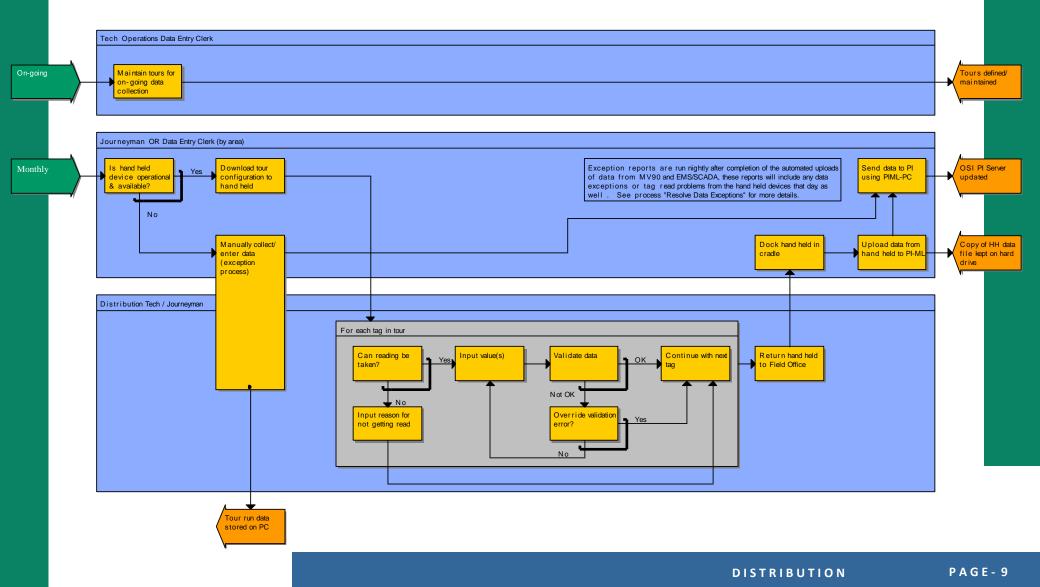

(including data quality clean-up)

- SUBVIEW Replacement
- Evaluate & Implement Hand Held Solution
- Implement Hourly Load Peak at 110 Substations (Critical)
- Develop Data Expansion Criteria & Quality Standards
- Integrate with Legacy SCADA and MV-90
- User, Developer, and System Administration Training

PAGE-7

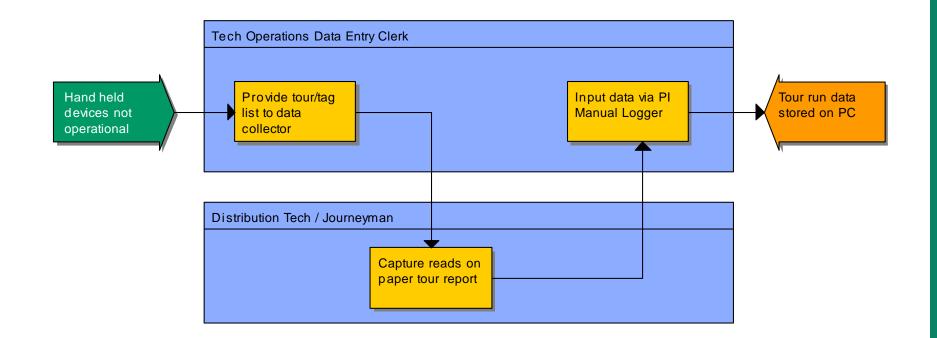
DISTRIBUTION

SCHOOL Project Lifecycle Status


Detailed User Requirements

- Drive the Business Functional Specifications and Process Maps
- ~167 Detailed User Requirements identified by Core Project Team
- Examples:
 - One handheld device for all substation data gathering needs
 - All substation inspection data and load data gathered in one visit, by one person
 - SCHOOL to provide inspector with SAP time order # and automatically enter time and close order when inspection complete

Example Process Map


2. UPLOAD DATA TO SCHOOL PI FROM HAND HELD DEVICES

Example Process Map

MANUALLY COLLECT & INPUT DATA

(Exception Processing - In the Event of Hand Held Device Failure)

<u>Priority</u>

OSI-PI & Business Needs

	OSI-PI Feature	User Benefit / Need
1	Designed to grab real-time equipment signatures and present that data immediately to users and applications	Without equipment signatures, Enterprise Asset Management (EAM) is simply an automated work order process.
2	Proactive, trending alarms can be presented to the user.	Anyone can receive the alarms, view data leading up to event and schedule mitigation action.
3	Application Programming Interface (API) library	Accelerated solution implementation and integration. Over 300 integration processes in the library.
4	Simple creation of any kind of connectivity / topology model or import other models real-time	Prevents painful, expensive connectivity creation
5	Becomes an integration tool for disparate databases that have information needed for condition-based calculations	Easy connectivity to multiple databases
6	Packaged reports with the ability to present asset data in many forms; performs pattern or event searches through data.	Can use any model from a EAM system
7	Does not sample or average incoming data	No loss of granularity; maintenance / planning does not have to "live" with what's provided
8	Advanced calculation engine (ACE)	Modular and straightforward to write ACE calculations that apply to specific classes of assets and attach triggering of an event through the alarm function.

Area Station View : Bar Chart

ASSET MANAGEMENT

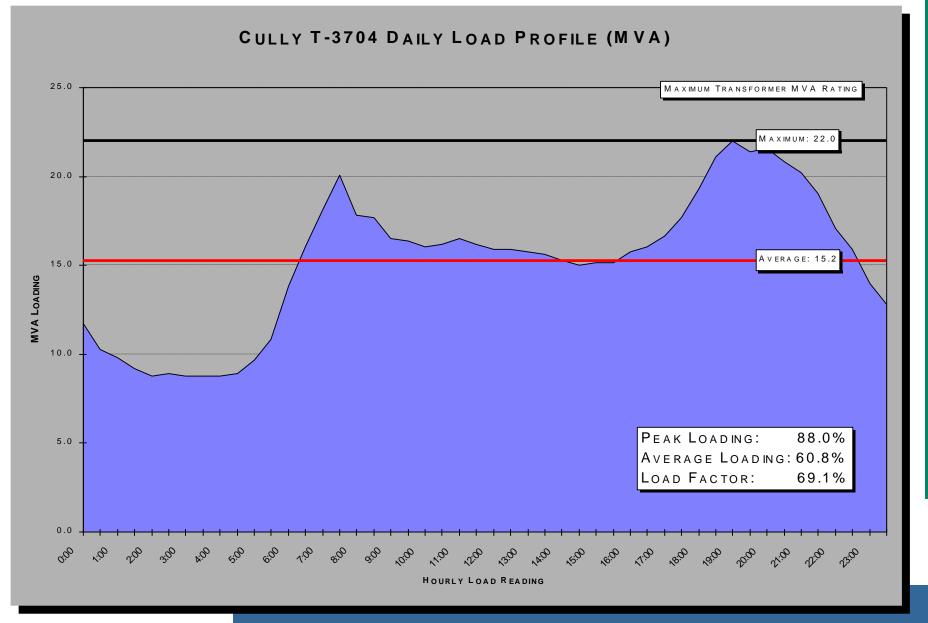
- 8

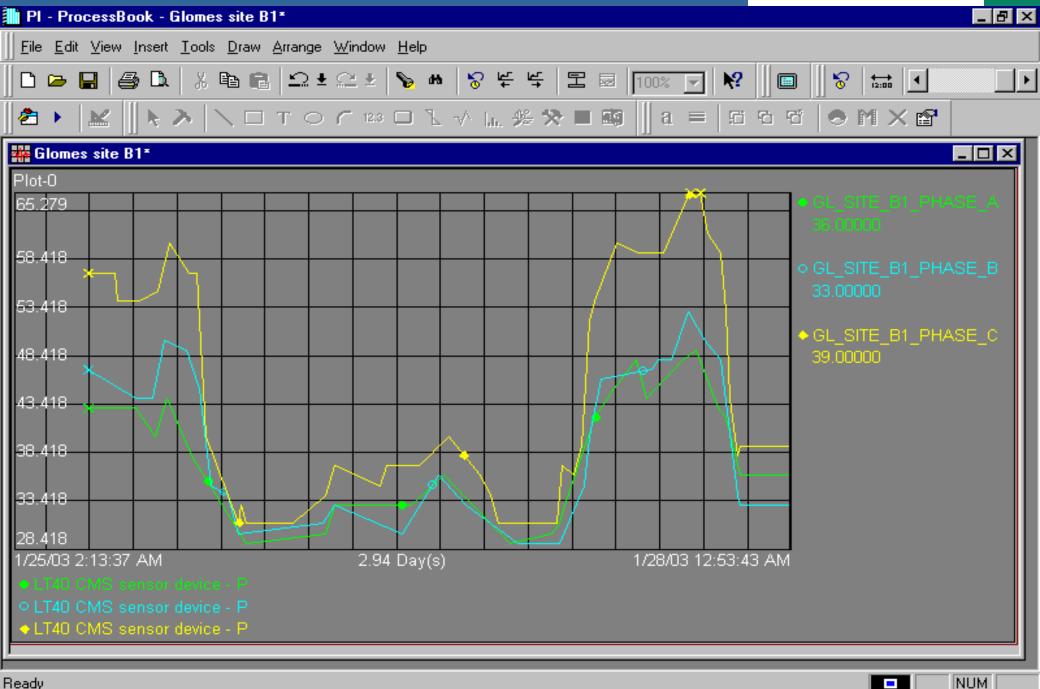
- 8

138/13.8 kV Station -- Aerial View

PI - ProcessBook - [JAMAICA 138KV AERIAL.PDI]

Eile Edit View Insert Tools Draw Arrange Window Help


Equipment Query: Transformer LTC Usage


	TAP POSITION CHANGE							
Tap Name:	HNTT2.M	HARR TR	2	TAPS				
Succesiv	Succesive Metered Value Change Greater Than: 0.6							
Begin Search On:	01-Mar-99 00:00			End Search On:	01-Apr-99 00:0			
	TAP CHANGE			TAP GOING THRU NEUTRAL				
	Count =476			Count =6				
	Tap Changed On	Tap Position		Tap Changed On	Tap Position			
	01-Mar-99 00:06:35	-6.936		01-Mar-99 18:59:55	0.024			
	01-Mar-99 01:41:44	-7.992		01-Mar-99 22:29:54	-1.000			
	01-Mar-99 05:16:44	-7.000		04-Mar-99 18:13:36	0.008			
	01-Mar-99 05:41:44	-8.000		04-Mar-99 21:14:05	-1.000			
	01-Mar-99 05:42:44	-9.000		08-Mar-99 18:55:22	0.024			
	01-Mar-99 05:46:54	-9.992		08-Mar-99 21:40:21	-0.992			
	01-Mar-99 06:56:45	-9.000		#N/A	#N/A			
	01-Mar-99 09:31:25	-7.000		#N/A	#N/A			
	01-Mar-99 17:59:15	-6.000		#N/A	#N/A			
	01-Mar-99 17:59:44	-4.984		#N/A	#N/A			
	01-Mar-99 13:00:05	-3.976		#N/A	#N/A			
	01-Mar-99 18:00:45	-3.024		#N/A	#N/A			
	01-Mar-99 13:01:04	-2.000		#N/A	#N/A			
	01-Mar-99 18:59:34	-1.000		#N/A	#N/A			
	01-Mar-99 18:59:55	0.024		#N/A	#N/A			

POWER DELIVERY

ASSET MANAGEMENT

Substation Asset Utilization

Ready

-

Key Project Benefits

The SCHOOL project provides a solution that will:

- Improve Operational Efficiency (enable Transition Plan efficiencies)
- Better rationalize capital expenditure (\$540k per year)
- Use an open and flexible integration architecture
- Capture quality information on assets
- Support sound procedures for data management
- Incorporate methodologies from Technology Blueprint
- Leverage technology already used by ScottishPower, Power Supply, Hydro, Future EMS/SCADA and 200+ U.S. T&D Utilities