

Implementing RTPM Infrastructure for a Validated Environment

May 14, 2003

Bill Smith Mead Johnson Nutritionals

> Mike Purcell Omicron Consulting

Omicron Consulting 1500 Market Street Philadelphia, PA 19102

Overview

- Drivers and Objectives
- → Vision
- **→** Infrastructure Planning
- **→** Architecture/Standards
- **→ Implementation Strategy**
- **→** Futures
- **→** Summary

Drivers and Objectives

- ▶ PI Infrastructure in an FDA Compliant Environment
 - → Help Facilitate Validation of Other Areas
- Serve as a Model for Other sites
- → Balance Implementation to Maximize Cost Effectiveness and Resource Utilization
- Leverage Emerging OSI technologies to Expose Process Data
- Position PI Infrastructure for the System of Record

Vision

- → Compliant OSIsoft Infrastructure Full Validation Documentation
- → Provide Enterprise Access to Real Time Manufacturing Data
- → Browser-Based Tools (Thin Client)
- → Proactive Notification
- → System of Record
- → Rapid, Reliable and Informed Decision Making

Infrastructure Planning

- **→** Phased Implementation
 - → Phase I: Validation & Batch Configuration
 - Phase II: System of Record and Flexible Reporting/Notification
 - ▶ Phase III: Enterprise Integration

Architecture/Standards

Naming Conventions

- → PI Tags
 - Implement a well-defined naming convention
 - → Utilize SCADA tag names as the core
 - → Prefix tags with area abbreviation
 - → Ensure naming convention makes it easy for users to find things via wildcard searches
 - Consolidate from previously used conventions

Module Database Hierarchy

- → Design a flexible hierarchy
- **→** Ensure compatible hierarchy with other components:
 - Event File Interface
 - PIBaGen
 - RTreports
- **→** Make the structure "repeatable"
 - ▶ Ease report generation issues by enabling the "general case" reporting

- **→ PI Points**
 - The Interface User to own the data
 - → Only interface can write data
 - **▶ Even PIAdmin cannot write/edit/delete**data without first editing security

 attributes of the point
 - PIAdmin to own the point (attributes)
 - **▶ Interface Admin Group associated with point and data**
 - Group to have read/write access to attributes but read/only to data

- **→ PI Users**
 - All users will have their own PI User ID
 - SOP's developed for User ID administration
 - Procedures for adding/deleting/changing users

- **→ Custom Application Security**
 - Utilize Windows NT/Netware Security to determine access rights
 - → Utilize AppName Trust to "proxy" user into PI to allow read/write access for manual data applications

- → Backup
 - Create custom cluster version of PISRVSTART and PISRVSTOP batch files
 - SOP to address backup and recovery

PI Message Log Audit Trail

- **→** Allows auditing of:
 - Edits or Deletes to the Data Archive
 - Does not support logging BLOB auditing
 - → PI Batch Database Changes
- → Audit trail is written to the PI Message Log
 - Message logs typically are purged after 15 days
 - → A backup procedure will accommodate longer retention of message log (audit trail)

Real-Time Data Collection

- **→ OPC Interface**
 - Multiple OPC Interfaces
 - Provide a level of fault-tolerance
 - → Logical delineations of data collection
 - → Data in PLC's is accessed directly from the PLC's via RSLinx
 - Data in SCADA are accessed via the SCADA's OPC server

Batch Data Collection

- **→ EVT Interface for Batch Execution System**batch files
- → PI Batch Generator Interface
 - New version is currently in development
 - Provide for down-stream processing hierarchical batch generation
 - Only be used where a Batch Execution System does not generate the batch information

Fault-Tolerance

- **→** Server
 - Use Microsoft Windows Clustering
 - Validation Test Strategy includes testing failure modes

Fault-Tolerance

- **→** Interfaces
 - Use multiple OPC Interfaces
 - → Failure of a single interface will stop data from being collected from a section of the facility rather than the whole facility
 - → Run the interfaces on a Windows 2000 cluster to provide high reliability
 - Use Buffering to protect against network outages and PI server outages

Alarming and Notification

- → PI-ACE Based
 - **→ Use Module Database for Configuration**
 - → Allow multiple instances of the same code
 - → Each instance runs in a context (module) and uses the Aliases defined in that context
 - → Use PI-SQC and PI-ALARMS for more complex triggering of notifications

- → PI-DataLink
 - → Possible add-ins for things such as:
 - → Cycle time analysis
 - Batch Hierarchy Reporting
 - Note: Next Version of the Excel portion of BatchView will not access Batch Database
 - → Training to provide users with Ad-hoc query capabilities

- → PI-ProcessBook
 - ▶ Next Version of BatchView will support
 - Batch Database
 - Hierarchical Batches
 - Batch Trends
 - Gant Charts

- **→ PI-ICE**
 - Web based access to PI Data, Trends, and Diagrams
 - Uses "Web parts" to allow end-user customization
 - Extensible via PI-ICE SDK
 - → Build custom Web parts such as:
 - → Batch Cycle Time
 - Batch Hierarchy
 - → Batch Discrete Data Reporting

- **→** RTreports
 - Early Adopter Program
 - Key batch reporting tool
 - Supports
 - → PI Batch Database
 - Hierarchical Batches
 - → Custom Calculations
 - Designed to be 21CFR11 Compliant

Implementation Strategy

- → Validation & Batch Configuration
- → First Half of 2003
 - Define Architecture/Standards
 - Compliant PI Server Installation
 - **▶ Interface Consolidation and Validated Implementation**
 - Batch Infrastructure Implementation (EVT)
 - System of Record Prototype (ICE, ACE, RTreports)
 - Quality Reporting
 - cGMP Training

- → Server Validation
 - Build Cluster as the Validated Server Using PI 3.3 SR2
 - Generate Validation Plan
 - Generate URS, FRS, GDS
 - → Requirements Traceability Matrix
 - → Generate and Execute IQ/OQ
 - Generate SOPs (Backup, Administration, Operations, Audit)
 - → Generate Traceability Matrix

- **→ Validated Implementation**
 - OPC Interface Design
 - Multiple Interfaces Providing a Level of Faulttolerance
 - Generate DDS (Detail Design Document)
 - → Specific Implementation
 - → Appendix Listing All Tags
 - Generate and Execute
 - → IQ/OQ
 - → Functional Test Specification (FTS)
 - Structural Test Specification (STS)

- → Batch Infrastructure Implementation (EVT)
 - → Generate DDS
 - **▶ EVT Generates Tags/MDB so DDS does not Have Tag List**
 - Generate and Execute
 - → IQ/OQ
 - → Test Plan

- → Manual Data Entry Yield Application
 - Separate Validation
 - → Validation Plan, FRS, DDS, IQ/OQ, Unit Test Plan, Integration Test Plan, System Acceptance Test Plan, Traceability Matrix, PQ
 - **♦ Leverage MDB for Correlation**

- **→** System of Record Proof of Concept
 - Non-validated, Read-only, Demonstrates Capabilities
 - **▶ Installation of PI-ICE and Configuration of Screens**
 - **▶ Installation of PI-ACE and Generation of Notifications**
 - Installation of RTreports and Generation of Reports

- **→ Quality Reporting Foundation**
 - → Shaped by Feedback from Proof of Concept
 - Generation of URS and FRS

- → cGMP Training
 - **▶ PI Client Tools**
 - **→ PI-ICE**
 - Administration

- **→** Central Repository
 - → Reliable Decision Making
 - → Fully Validated End to End
 - → Quality Data Batch Release
 - → 21 CFR Part 11 Compliant

- **→** Quality Needs
 - Specification Compliance
 - Analysis Tools
 - Internal Audits
 - Batch Release Criteria
 - Certificates of Analysis
 - → Root cause analysis
 - → SQC

- **→** Regulatory Needs
 - Exception Reporting
 - Exception Analysis
 - **→ Regulatory Compliance Reports**
 - Environmental

- **→** Manufacturing Needs
 - Batch Summary
 - Utility Reports
 - Detail by Unit, Product, etc.
 - → Yield, Efficiency, Throughput
 - → CIP/SIP

- → July 2003 March 2004
 - MDB & PIBAGEN for non-iBatch
 - Validated Implementation
 - ▶ PI-RTreports
 - **→ PI-ICE**
 - → Notification/PI-ACE
 - Other Automation Areas
 - Communicate Findings to Other Sites

Phase III (futures)

- → Packaging & Enterprise Integration
 - → March 2004 September 2004
 - Evaluations Integration/Migration
 - **→ SAP RLINK**
 - → Maintenance Management System
 - Automation Integration of Packaging
 - Evaluate PLM Integration
 - Other Site Implementations

Questions & Answers

Implementing RTPM Infrastructure for a Validated Environment

May 14, 2003

Bill Smith Mead Johnson Nutritionals

> Mike Purcell Omicron Consulting

Omicron Consulting 1500 Market Street Philadelphia, PA 19102