

2

Solution Development

Using Visual Studio.NET

and the MDB

Bob Knox

George Muller

3

Conectiv Energy

◼ Merchant Generation company in PJM

◼ Merchant provides

◼ Fuel & fuel arbitrage

◼ Power marketing

◼ Generation dispatch & management

4

PI at Conectiv Energy

◼ The Early Years - Plants

◼ PI at each plant to capture operational data

◼ Used for plant engrng, operation & performance

◼ Next Phase – Merchant

◼ Time-series market data

◼ Market interfaces & information

◼ Built by External Consulting Firm on Excel/VBA

platform

5

PI at Conectiv Energy

◼ Current Phase

◼ Merchant / Generation Integration, Generation
Desk, Plant management & metrics

◼ New and re-architected applications

◼ Built on Visual Studio.NET, MDB, PI-SDK, and
ACE

◼ Allows team to more economically meet growing
business needs

◼ Leverage code across units with varying characteristics

◼ Reduces development and maintenance costs

6

Value Proposition
(how to sell this to your management)

◼ First – understand your business model:

◼ Information = Time + Decisions = $

◼ Information important in each segment

◼ Growing demand for information & applications

◼ Growing pressure to control escalating costs

Conversion Marketing Customer $Fuel

7

Value Proposition

◼ Understand how to add value

◼ Where do you spend application dollars?

◼ Core – sustain the business, maintenance

◼ Growth – support business growth through enhancement

◼ Venture – allow new business opportunities

◼ Core spending grows over time, and with limited
resources limits your ability to support Growth &
Innovation

◼ Challenge – how to maximize the value of your
application dollar

8

Value Proposition

Shifting the Spending

◼ MDB to categorize and commoditize assets

◼ ACE for context-sensitive automated processing

◼ VS.NET components provide reusable function

$

Growth & Investment
Maintenance
Total Spend

9

Solution Development Essentials

◼ Platform and Architecture Identification (use

ACE?, Web Application?, Windows Application?

Other Relational Databases?)

◼ Module Database Factoring and Configuration

◼ Software Modeling Using an Object Oriented

Approach

10

Module Database Factoring

◼ Primary Objective: Model the Physical Design

of the Plant and Equipment

◼ Secondary Objective: Model the Application

Design, by Meeting the Software and Business

Requirements

11

Module Database -

Logical Module Design

◼ Create a Parent Module named “logical” to

contain the Plant Assets and Equipment

◼ Model the Assets of the Plant and Equipment in

Child Modules

◼ Match static data and descriptions against Module

Database Properties

◼ Identify and categorize each PI point to a Module

Database Alias

12

Module Database –

Logical Design Suggestions

◼ Keep the Design as ‘Flat’ as Possible

◼ Minimize Module and Property hierarchy

◼ Use Concatenation (i.e. “ParentProp:ChildProp”) of

Aliases and Properties

◼ This design will be the basis for creating a

reusable software library, to be shared by other

applications

13

Module Database Example:

Plant and Equipment Summary

14

Module Database

Example:

“logical” Configuration
Live Illustration!

15

Module Database – Application

Module Design

◼ Create a Parent Module named “apps” for each
Application Created

◼ Store Security Settings

◼ Store “Win Registry” Settings to Minimize
Deployment Issues

◼ Store Application Layout and Personalization
Settings (i.e. Column Layouts, Color Schemes, etc.)

◼ Link “logical” Modules to “apps” Modules, if
necessary

16

VS.NET Development –

Software Modeling

◼ Create a Reusable Software Library (a.k.a.
Library) to interact with the Module Database
“logical” Structure (n-Tier)

◼ Create new applications which reuse the Library
to read / write data from the PI database (User
Interface Tier)

◼ Use the PI-SDK vs. PI-API for component
development (also, perhaps the PI-OLEDB,
dependent upon the platform)

17

VS.NET Development –

Architectural Overview

18

VS.NET Development –

“Library” Design Basics

◼ Mirror Class Composition to MDB Hierarchy

◼ Start with a Parent class that creates PI-SDK and OLE-DB

connections, validates initial security, and instantiates other

required objects (i.e. class named “Power”)

◼ Create additional classes in order of depth in the Module

database “logical” design

◼ Results in a composite structure friendly to programmers (i.e.

Power.Plants(“MSPS”).Units(“MSCT01”).Property)

19

VS.NET Development –

“Library” Design Basics (cont’d…)

◼ Consider creating classes that support

enumeration (through IEnumerable)

◼ Results in support of For Each… (i.e. For Each

objUnit in Power.Plants(“MSPS”).Units)

◼ Validate security to each child object within the

enumeration class

◼ Consider creating Base Class and Derived

Classes to allow for the different characteristics

and attributes of each plant and equipment

20

VS.NET Development –

“Library” Class Diagram

21

VS.NET Development

Sample Project Review –

Live Illustration!

22

Thank You!

Bob Knox

George Muller

Conectiv Energy

Newark, DE

