

August 22 - 23, 2013 Mumbai, India

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

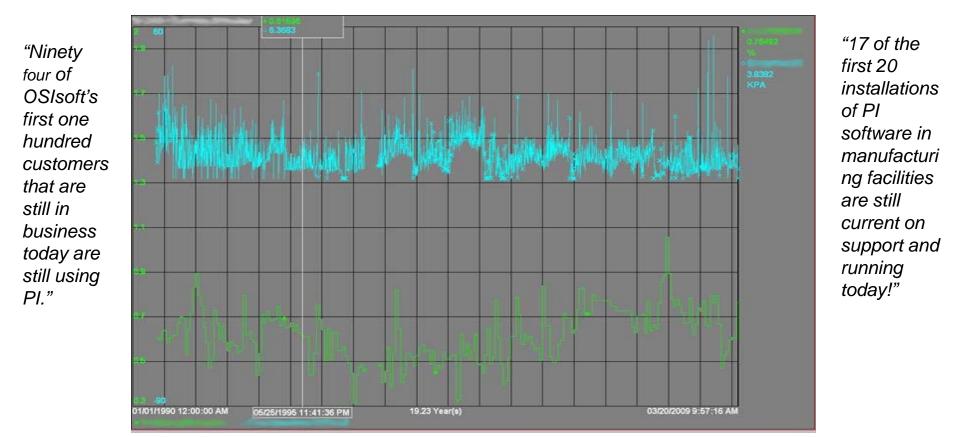
© Copyright 2013 OSIsoft, LL(

Power Generation Key Takeaways from UC 2013

Presented by Chris Crosby Power Generation Industry Principal 22nd August, 2013

OSIsoft. REGIONAL SEMINARS

© Copyright 2013 OSIsoft, LLC.


"Our mission is to maximize the VALUE our customers get from our product and services." Dr. Patrick Kennedy

"OSIsoft and the PI System exist to make you smarter, enabling better decisions."

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

Interesting Statistics...Customer 104, Abitibi Paper: 19 years of continuous data; tag history preserved through 4 control systems and 8 operating systems

"Through all of the 33+ years of technology change, customers who purchased PI have been able to keep all of their PI Archive data through HP, VMS, UNIX, NT and Windows 8 – and soon cloud. Not once have they had to repurchase the software that housed their data and not once have they lost data due to system changes that did not include a seamless migration forward."

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

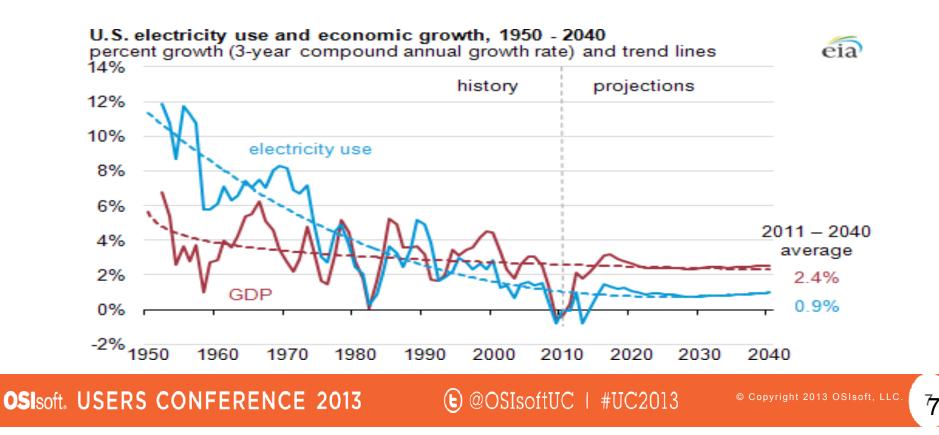
4

Chris Crosby Power Generation Industry Principal

- Humanitarian
- Energy Scientist
- Technologist

€ @OSIsoftUC | #UC2013

The Humanitarian View


"Household electricity consumption is widely viewed and accepted as providing substantial standard of living (quality of life) gains.

by

Roselyne Joyeux and Ronald D. Ripple in *The Evaluation of Standard of Living and the Role of Household Electricity Consumption*

The Economic View

"A country's economy and its energy use, particularly electricity use, are linked. Short-term changes in electricity use are often positively correlated with changes in economic output (measured by gross domestic product (GDP))." US Energy Information Agency

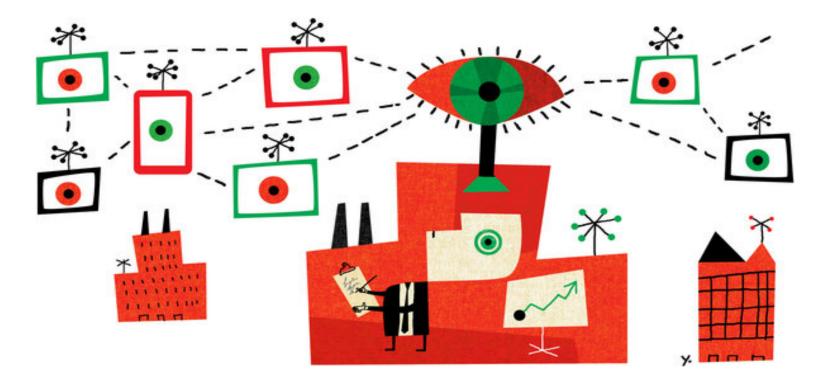
Nuclear Power - The Safety View

"We need to work together--both domestically and internationally--to reduce the potential for another accident...I believe industry should consider international cooperation and essential component of ensuring nuclear safety."

by

Allison Macfarlane, NRC Chairman

Why Should You Care?


"In this background, people who have decades of experience in project execution and technology experts who can increase the efficiency of the plants to deliver the highest (utilization)...are in high demand for the key positions."

- Essar Power is expanding its capacity...
- Monnet Power Company commissioning 535MW power plant next month...
- Jindal Power Ltd. is strengthening its team to support its expansion...

Reghu Balakrishnan, Business Standard, 21st August

9

No Such Thing as Too Much Information

"Data Driven Decision Making Results in a Net Gain of 5 to 6 % on Output and Productivity."

Reference: Brynfjolfsson, et al., MIT, How does Data-Driven Decision making Affect Firm Performance, 2011. <u>http://www.nytimes.com/2011/04/24/business/24unboxed.html</u>

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.

OSIsoft PI System: A Vessel for Change in Verve Energy

Francois Mevis, Verve Energy

OSIsoft. USERS CONFERENCE 2013

(e) @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LL(

OSIsoft PI System A Vessel for Change in Verve Energy

Wednesday, 17 April 2013

OSIsoft. USERS CONFERENCE 2013

e @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LL

Contents

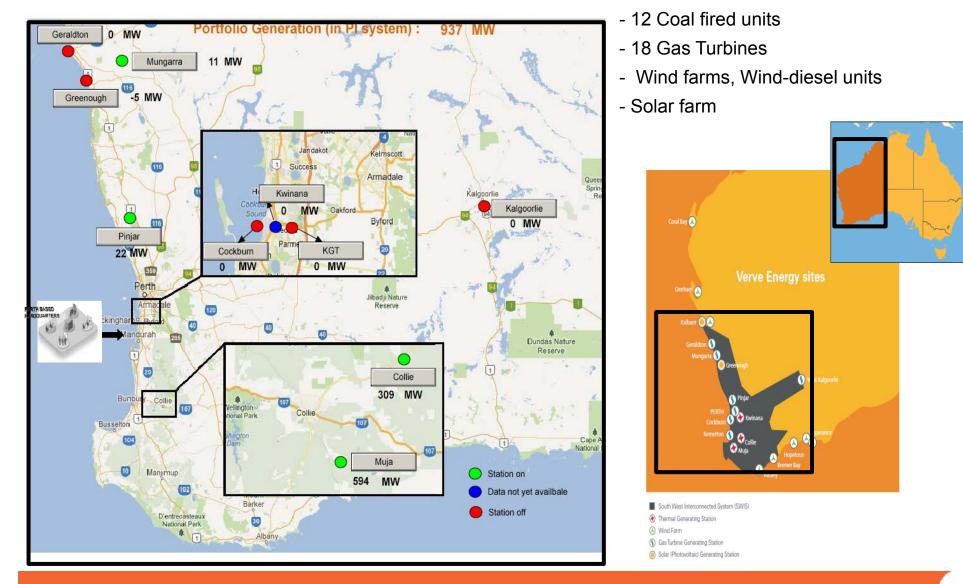
- Context
 - •Company
 - •Plant Operational Information Programme
- Programme set up
- Technology implementation
- Business transformation
 - •Organising business transformation
 - •Benefits realisation
- Observations
- Questions and feedback

OSIsoft. USERS CONFERENCE 2013 Copyright Verve Energy 2013

e @OSIsoftUC | #UC2013

Verve Energy - Organisation

€ @OSIsoftUC | #UC2013


State owned power generator in Western Australia

- Current company structure established in 2006 after disaggregation of Western Power
- Approximately 620 staff
- 5 major power station and 20 minor, unmanned sites
- Historically site and location focused
- Nameplate generation capacity is over 3000 MW
- Supply approximately 55% of energy in Western Australia,
- Fuel is predominantly coal and gas, with smaller contributions from oil, wind and solar

OSIsoft. USERS CONFERENCE 2013

Verve Energy Portfolio

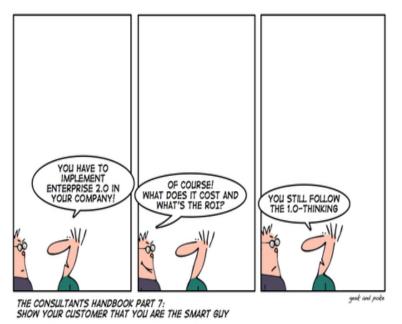
OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LL

Context - Programme

- What is the problem?
 - Data only accessible on site through different software products
 - No integration and no overview over sites
 - No easy sharing or implementation of solutions
 - Aging workforce key people will be retiring in next 2 years
 - Demand is becoming more challenging; more mid-merid and peak generation



- What is the purpose?
 - Increase visibility and usability of all operational data through standard toolsets
 - "Stop smart people doing stupid work"

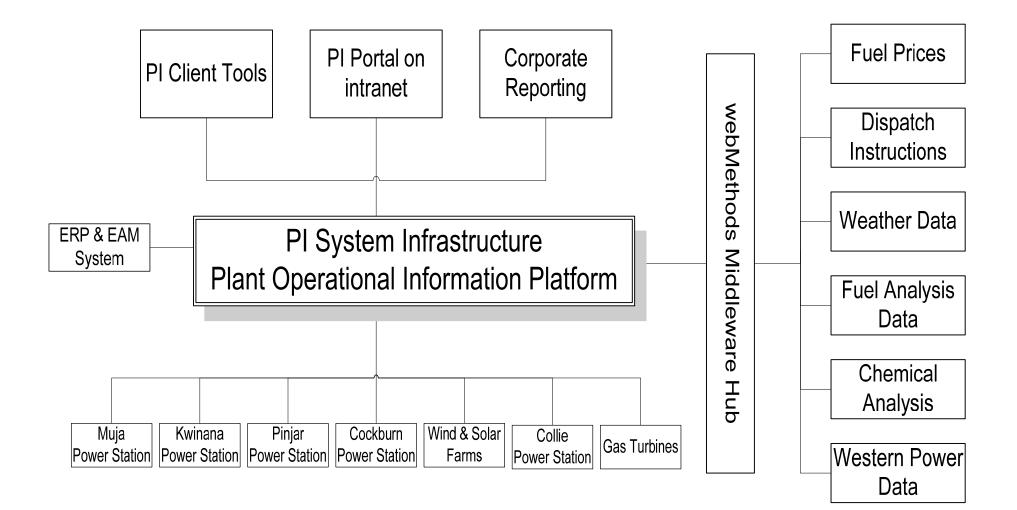
€ @OSIsoftUC | #UC2013

Business Case

- Programme justification
 - Increase fuel efficiency
 - Optimise asset use and maintenance regimes
 - Optimise generation unit dispatch stack
 - Record existing operational knowledge and increase accessibility

- Approach
 - Establish a central information platform for storing and analysis of operational data
 - Establish a 'vessel' for business transformation and benefits realisation

Business Case – 12 months later



OSIsoft. USERS CONFERENCE 2013

(e) @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LL

Technology Implementation

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

Business Transformation

Organising Business Transformation

• Guiding principal:

"This is foremost a transformational programme, not a technology implementation"

"All about the people"

- Target both hierarchical and functional leaders
 - General Managers
 - Chief Engineer, Principal & Senior Engineers
 - "Informal leaders"

More the supporting our popels for reseting a workplace and culture where the supporting our popels for reseting a more place and culture where place reseting a more place and culture where place and culture where reseting a more place and culture where place and culture where reseting a more place and culture where and culture where place and culture where and culture where place and culture where place and culture where place and culture where and cu

€ @OSIsoftUC | #UC2013

Business Transformation

Organising Business Transformation

- Approach to functional leaders
 - Engaged at the start of the programme
 - Trained in use of the system (PI System Visualisation course)
- Establish 'Key User Group'
 - Monthly formal meetings

OSIsoft. USERS CONFERENCE

- Chief Engineer, Principal Engineers, and 'Informal leaders' from Finance, Trading & Fuel and Bus Development BU's
- Align implementation to business requirements
- Leading in definition of the system, data and user governance framework; and user support structure

(e) @OSIsoftUC | #UC2013

- Identify opportunities for benefits and actively pursue realisation
- Identify opportunities to re-use solutions in other locations or BU's
- Ambassadors in the organisation for the programme and the PI system

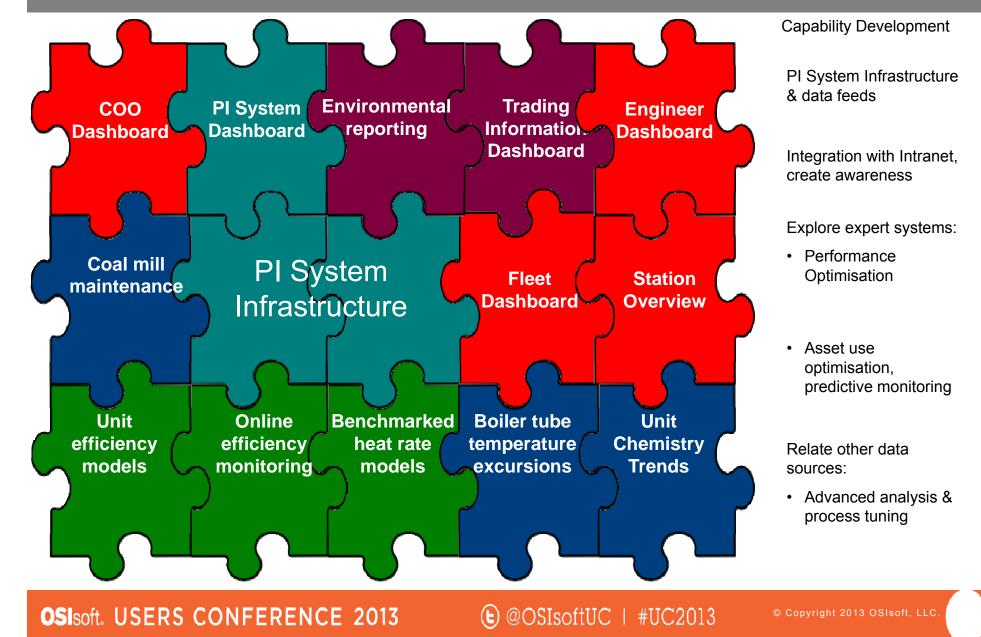
Business Transformation - KUG

Results Key User Group engagement

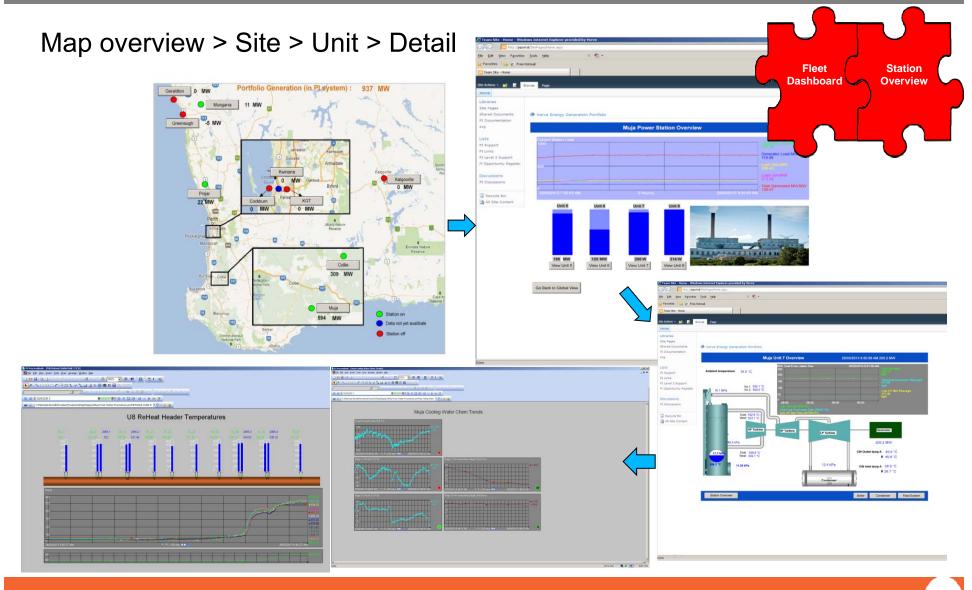
- 'Rules of Use' are understood and mandated
 - Data and System Governance document is kept alive
 - Governance roles & responsibilities are described in a RACI matrix
- Initiatives are appearing in multiple parts of the organisation
- Sense of ownership regarding the project and the systems
- Fit for use data organisation
 - Asset hierarchy vs Process hierarchy in PI Asset Framework
 - Use of smart tools to allow quick build and change, eg Optimate's AF mapping tool
- Critical mass of knowledgeable stake holders
 - The Key User group exists of 17 permanent members
 - Currently 70 people have been trained spread over all relevant business units and locations

OSIsoft. USERS CONFERENCE 2013

e @OSIsoftUC | #UC2013


Business Transformation - Benefits

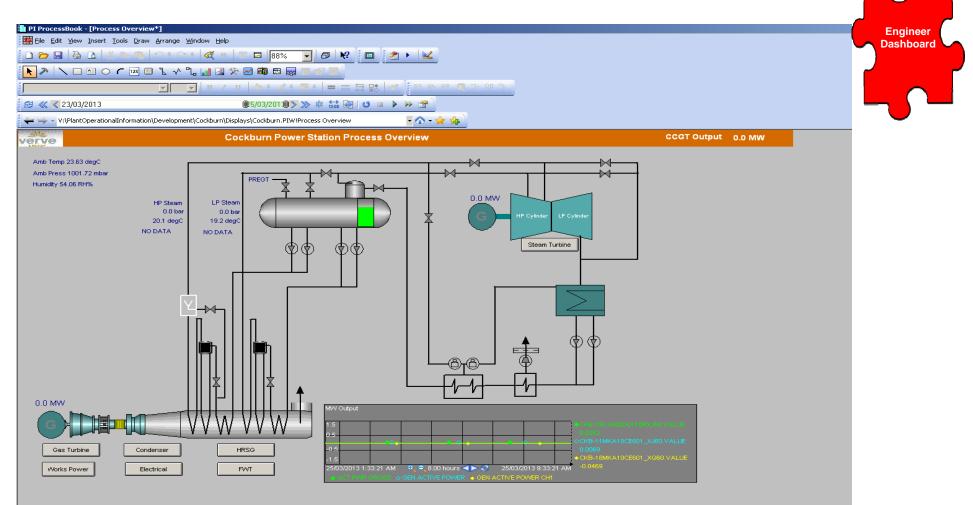
- Define responsibility and create interest
 - Realisation of benefits is embedded in KPI's
 - Benefits have 'owners'; the programme structure enables and monitors progress
- Enable and support 'make it easy'
 - Periodic user training
 - Functional support staff ('super users') are located on all sites
 - Existing contractual arrangements with consultancy companies that specialise in the PI System


€ @OSIsoftUC | #UC2013

- Create a process for identifying, starting and tracking of initiatives
 - All initiatives are tracked against a benefits realisation dashboard
 - Programme funds approved initiatives

Business Transformation - Benefits

Examples – General Dashboard



OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LL

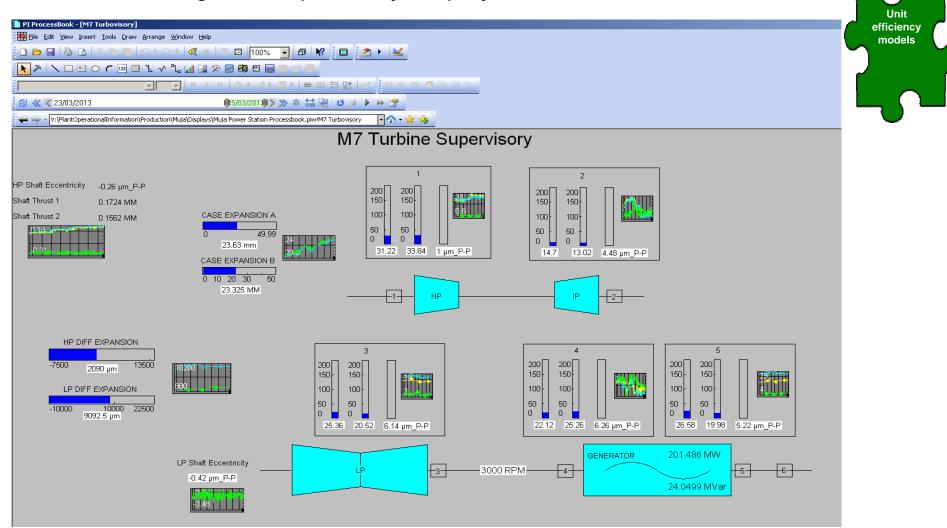
Station Overview Cockburn

OSIsoft. USERS CONFERENCE 2013

(e) @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.

Boiler Tubes over Nameplate Temperature

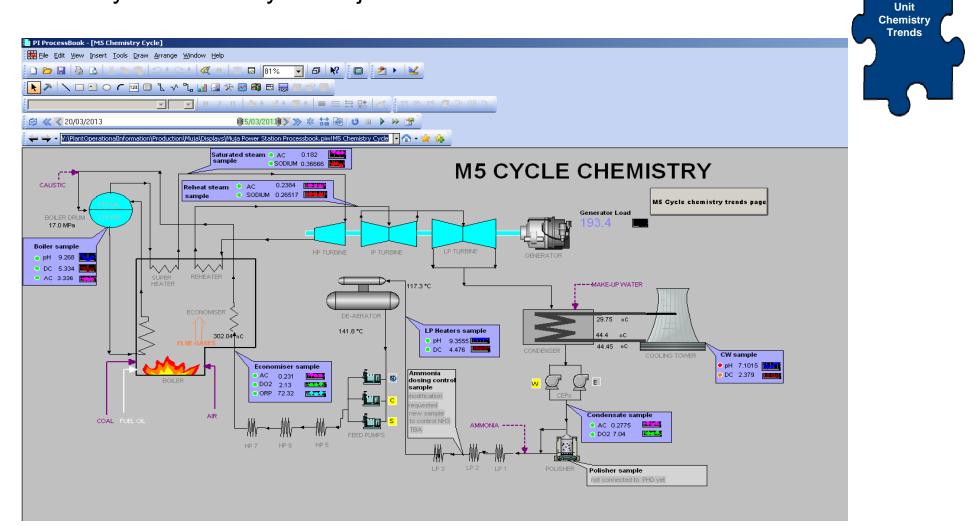

38	4 4 Yicrosoft Excel - U7 Final Stage RH HDR	Temps					excur
_	File Edit View Insert Format To	-	telp Ado <u>b</u> e PDF				
_				1 40001			
: 🗳) 🚰 🖬 💪 🖪 💁 🖏 🐇 🛛				Ŧ		
Ar	ial - 10 - B I <u>U</u>	I 📰 🚍 📑 📑 🛛 💲 %	• • • 00 .00 • • • • • • • • • • • • • •	🔛 + 🧆 - <u>A</u> - 🖕			
: 🕁							
) Share This File WebEx 🕶 💂						
: 🕊							
	F22 v fx	С	D	E	F	G	
	A	-	—	_	F	G	
1		U7 Final Stage	R/H Header	emperatures			
2	Start Time						
з	1/05/2012						
4	End Time						
5	30/06/2012						
6							
7	Stub T/C's	Maximum Date/Time	Maximum Value	Minutes > 560degC			
8	MPS-7-RHS-TE-2055-1-XQ01 MPS-7-RHS-TE-2055-2-XQ01	21-May-12 12:14:07 19-Maγ-12 05:09:55	581.94 581.88	42.60 849.57			
	MPS-7-RHS-TE-2055-2-XQ01 MPS-7-RHS-TE-2055-3-XQ01	19-May-12 05:09:55	584.70	049.57 1045.75			
	MPS-7-RHS-TE-2055-4-XQ01	[-11059] No Good Data F					
12	Header T/C's			0.00			
	MPS-7-RHS-TE-3103-1-XQ01	07-Jun-12 07:24:20	543.96	0.00			
	MPS-7-RHS-TE-3103-11-XQ01	07-Jun-12 07:24:23	576.42	26.10			
	MPS-7-RHS-TE-3103-17-XQ01	07-Jun-12 07:22:39	574.20	31.67			
	MPS-7-RHS-TE-3103-22-XQ01	19-May-12 05:10:06	563.64	27.33			
	MPS-7-RHS-TE-3103-27-XQ01	19-May-12 05:10:23	574.50	89.72			
18	MPS-7-RHS-TE-3103-32-XQ01	07-Jun-12 07:24:09	577.38	60.40			
19	MPS-7-RHS-TE-3103-38-XQ01	07-Jun-12 07:21:55	577.80	27.97			
20	MPS-7-RHS-TE-3103-42-XQ01	10-Jun-12 11:05:41	552.60				
	MPS-7-RHS-TE-3103-47-XQ01	03-May-12 03:44:29	491.94	0.00			
22	MPS-7-RHS-TE-3103-6-XQ01	07-Jun-12 07:24:41	580.68	58.78]	
23							
24							
25							
26							

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

Boiler tube temperature

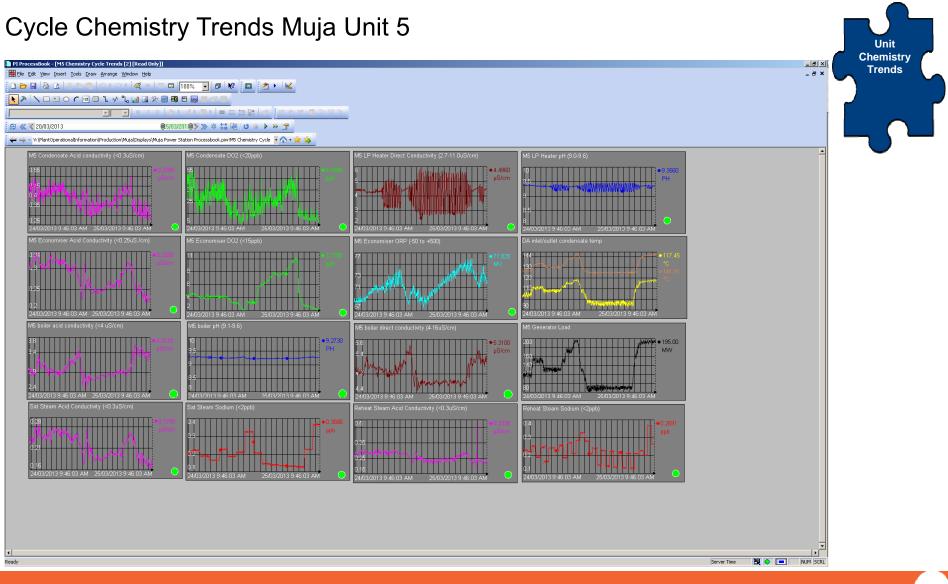
Generating Unit Supervisory Display



OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.


Cycle Chemistry for Muja Unit 5

OSIsoft. USERS CONFERENCE 2013

(e) @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.

OSIsoft. USERS CONFERENCE 2013

(e) @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LL

Benefits – Bottom Line

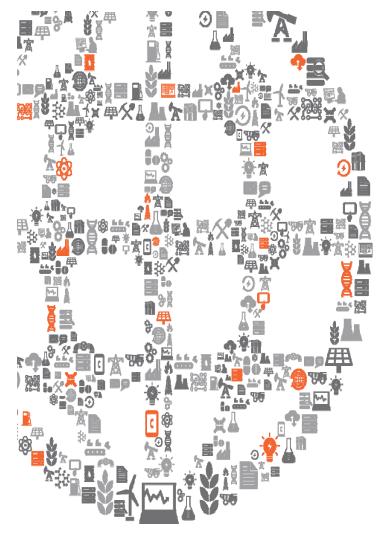
- Substantial part of fuel savings target is underway in less than 12 months – and we are just scratching the surface
- We can see additional value within reach in predictive analysis to improve maintenance and other initiatives
- The intent is not to limit our scope of activities to just one or two projects
- We are having some C-level discussions about the need to support over 10+ initiatives in business improvement running in parallel
 - In January we had 1 benefits realisation initiative that was well defined and economically sound
 - In March we have 22!

€ @OSIsoftUC | #UC2013

Observations

Technology implementation, if adequate preparation is done, is not a major issue -- business transformation is the hard part

- The basis of data management has to be in place
 - Ownership of data
 - Change management in data feeds
 - Naming conventions, hierarchy structures
 - Establish a 'publish' process for reports, PI ProcessBook displays, web pages
- Training is key
 - Classroom training (baseline)
 - Advanced 'training' (value add)
- Allow for a learning curve
 - Allow experiments (and accept occasional rework); avoid "analysis paralysis"
 - Facilitate exchange of ideas and solutions, both inside as with the external


user community

e @OSIsoftUC | #UC2013

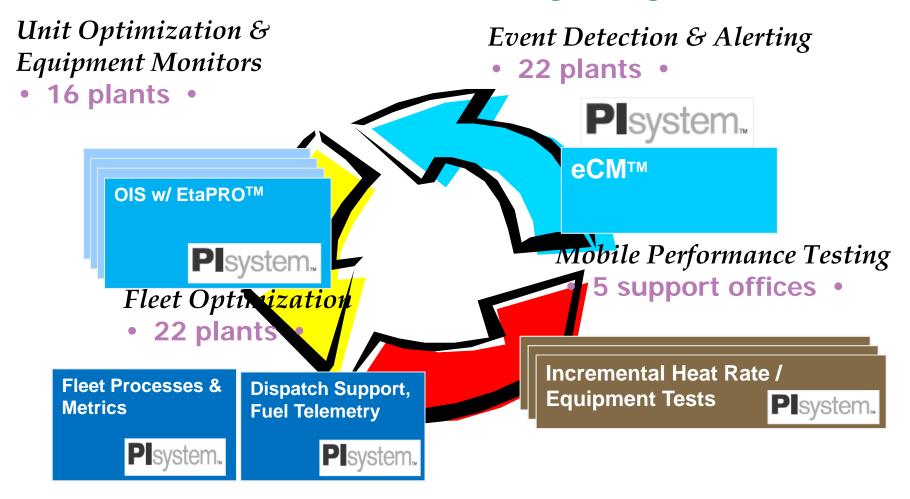
Observations

Formalise and facilitate benefits realisation:

- Make it important
- Make it easy
- Make it visible

Power Plant Startup Monitoring and Optimization

Presented by Steve Winsett, Entergy OIS Program Manager



OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.

Entergy's PI Solutions

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.

Power Plant Startup Monitoring and Optimization

GT2 Start Lead Estimate: 15 Actual: 0 GT1 GT1 Start Leg Synch Li Actual: 0 Actual: 0 GT1 Start Leg Synch Li Comparison Actual: 0 Comparison Compar	ead EM-TF- 0	tart 🗹 🗹	Estim	N
Actual: 1 Actual:			Act	ual: 1
ST Roll to 3600 Hold at 360		STG 10 % Load Hold	STG Forward Flow	Release to Dispatch
Estimate: 5 Actual: 0 Actual: 2		Estimate: 30 Actual: 2	Estimate: 60 Actual: 1	Estimate 10 Actual 2

Business Challenges

- Startups for each unit were occasional and inconsistent
- Personnel can be shared plantto-plant
- Aging workforce/new employees

Solution

- Implemented series of PI Processbook displays
- Using PI Batch, created Batches to track startups and times
- Developed reporting spreadsheet using the PI-SDK

Transition Monitor Detailed Startup Report

			a 1/24/2012 9:14 AM		
Plant: Unit:		Unit			
	1			ſ	
		Duration (HR)	OTS Estimate (HR)	Variance from OTS	
Startup ID	1 Startup 29-Apr-11 23:14:45	11.58	10.5	64.8 MIN (1.08 HR)	
OTS Start Time	4/29/2011 11:14:20 PM				
End Time	4/30/2011 10:49:20 AM				
1st Stg Mtl Temp					
Phase	Start Time	End Time	Duration	TM Estimate	Variance from TM
CW Pmp	4/28/2011 12:06				
FD Fan	4/29/2011 22:08				
Startup	4/29/2011 23:14	4/30/2011 10:49:20 AM	695 MIN (11.58 HR)	366 MIN (6.1 HR)	329 MIN (5.48 HR)
Station Air Sys	4/30/2011 0:39				
Condenser	4/30/2011 0:45	4/30/2011 2:05	80 MIN (1.33 HR)	0 MIN (0 HR)	80 MIN (1.33 HR)
Build Drum Pressure	4/30/2011 1:13	4/30/2011 1:14	0.08 MIN (0 HR)	180 MIN (3 HR)	-179.92 MIN (-3 HR)
Establish Vacuum	4/30/2011 1:14	4/30/2011 2:05	51 MIN (0.85 HR)	60 MIN (1 HR)	-9 MIN (-0.15 HR)
Satisfy Steam Conditions	4/30/2011 1:14	4/30/2011 2:02	48 MIN (0.8 HR)	30 MIN (0.5 HR)	18 MIN (0.3 HR)
Boiler	4/30/2011 2:01	4/30/2011 2:02	0.08 MIN (0 HR)	0 MIN (0 HR)	0.08 MIN (0 HR)
Turbine	4/30/2011 2:05	4/30/2011 2:28	23 MIN (0.38 HR)	0 MIN (0 HR)	23 MIN (0.38 HR)
Condenser	4/30/2011 2:28	4/30/2011 3:43	75 MIN (1.25 HR)	0 MIN (0 HR)	75 MIN (1.25 HR)
Establish Vacuum	4/30/2011 2:28	4/30/2011 3:43	75 MIN (1.25 HR)	60 MIN (1 HR)	15 MIN (0.25 HR)
Boiler	4/30/2011 3:25	4/30/2011 3:58	33 MIN (0.55 HR)	0 MIN (0 HR)	33 MIN (0.55 HR)
Satisfy Steam Conditions	4/30/2011 3:25	4/30/2011 3:58	33 MIN (0.55 HR)	30 MIN (0.5 HR)	3 MIN (0.05 HR)
Turbine	4/30/2011 3:58	4/30/2011 7:12	193.25 MIN (3.22 HR)	0 MIN (0 HR)	193.25 MIN (3.22 HR
Roll to 2400	4/30/2011 4:10	4/30/2011 4:18	7.75 MIN (0.13 HR)	10 MIN (0.17 HR)	-2.25 MIN (-0.04 HR
Achieve Stm Conditions for Hold	4/30/2011 4:18	4/30/2011 10:49	391.08 MIN (6.52 HR)	10 MIN (0.17 HR)	381.08 MIN (6.35 HR
Condenser	4/30/2011 7:12	4/30/2011 7:23	11 MIN (0.18 HR)	0 MIN (0 HR)	11 MIN (0.18 HR)
Establish Vacuum	4/30/2011 7:12	4/30/2011 7:23	11 MIN (0.18 HR)	60 MIN (1 HR)	-49 MIN (-0.82 HR)
Turbine	4/30/2011 7:23	4/30/2011 8:52	89.25 MIN (1.49 HR)	0 MIN (0 HR)	89.25 MIN (1.49 HR)
Roll to 3300	4/30/2011 8:38	4/30/2011 8:50	11.75 MIN (0.2 HR)	9 MIN (0.15 HR)	2.75 MIN (0.05 HR)
Roll to 3600	4/30/2011 8:50	4/30/2011 8:52	2 MIN (0.03 HR)	3 MIN (0.05 HR)	-1 MIN (-0.02 HR)
Released	4/30/2011 10:48				

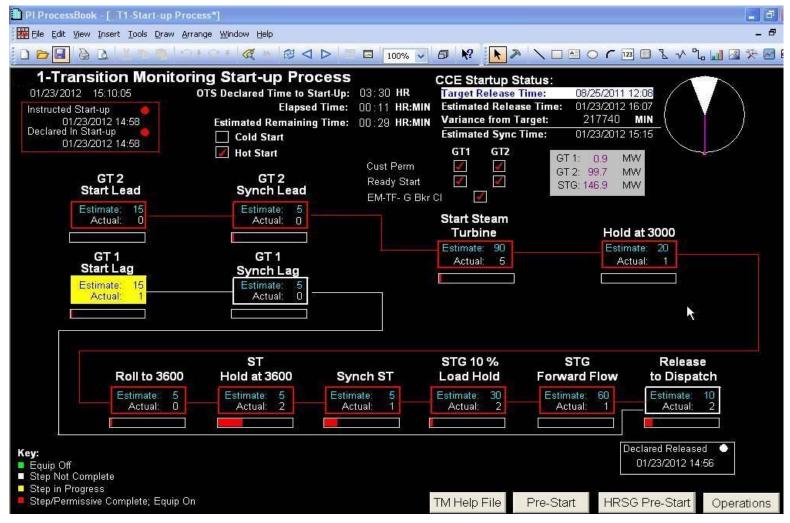
Results

- Startups easier to track outside of plant
- More procedurally consistent startups
- Startup accuracy improved by roughly 95%

OSIsoft. USERS CONFERENCE 2013

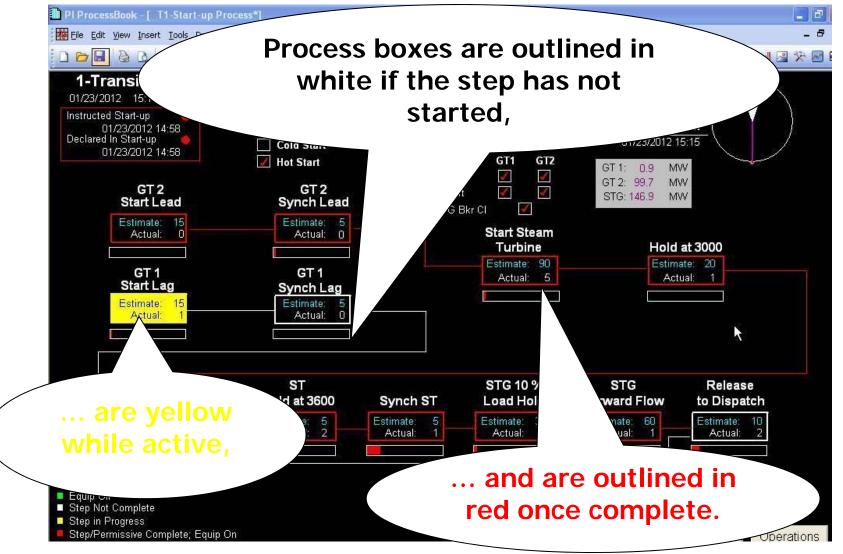
€ @OSIsoftUC | #UC2013

36


- PI ProcessBook & Performance Equations:
- Determine/display start-up progress
- Accumulate actual elapsed time
- Calculate "% complete"
- Track status of plant equipment & conditions

PI Batch:	PI Manual Logger (Future):
 "Back-bone" of the start-up monitor 	 To capture water analysis from grab samples during start-up
 Facilitates reporting 	
	PI-DataLink/PI-SDK:
	Start-up Reports
SIsoft. USERS CONFERENCE 201	3 (Copyright 2013 OSIsoft, LLC.

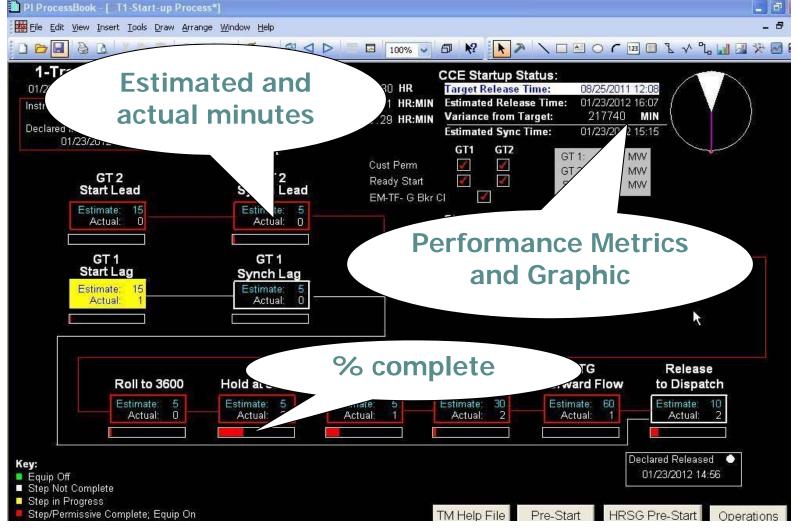
PI-Processbook


- Graphically illustrate the start-up process
- Track progress
 - Durations, milestones, "time remaining"
- Link to operating procedures
- Display key process data
- "Replay" startups for process improvement

€ @OSIsoftUC | #UC2013

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013



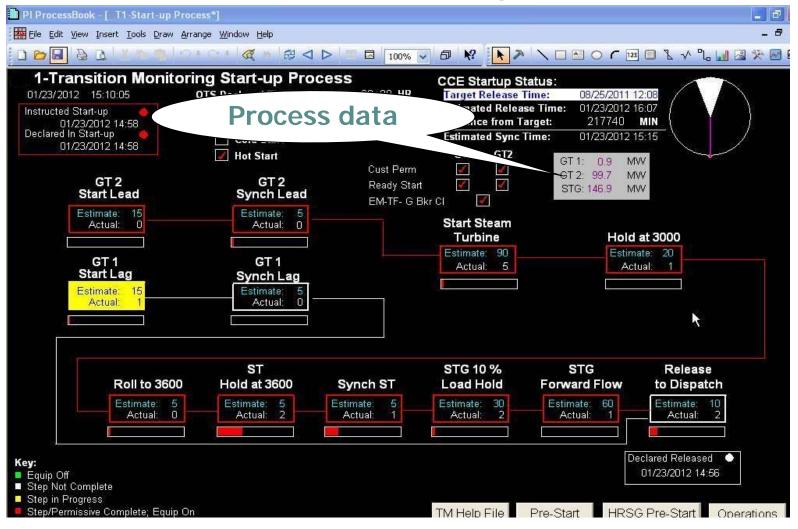
OSIsoft. USERS CONFERENCE 2013

(e) @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.

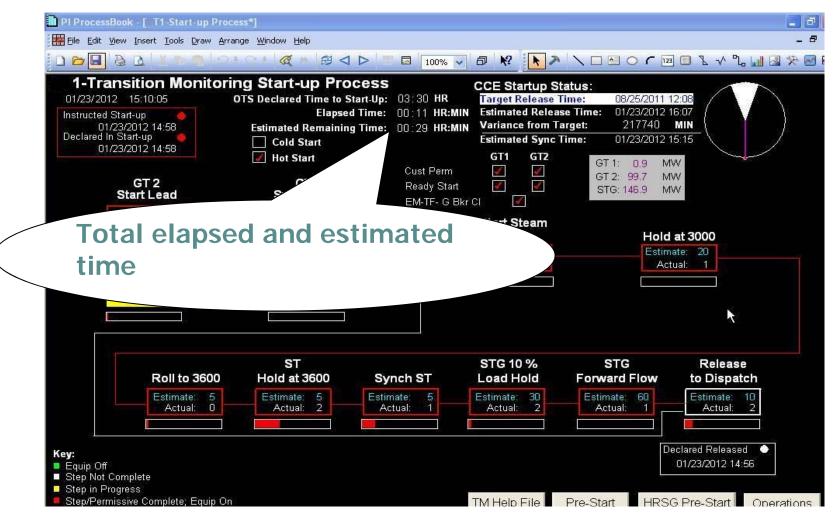
New PI Solution: Transition Monitor

OSIsoft. USERS CONFERENCE 2013


(e) @OSIsoftUC | #UC2013

Power Plant Startup Monitoring and Optimization PI ProcessBook - [T1-Start-up Process*] File Edit View Insert Tools Draw Arrange Window Help _ 8 AB A DIGI * & < > I 100% ▼ 5 K? 🗼 🔊 🛝 🗆 🔿 🗸 🔤 🗈 🔪 🔧 🔜 1-Transitie CCE Startup Status: Permissives 01/23/ Target Release Time: 08/25/2011 12:08 01/23/2012 16:07 C MIN Estimated Release Time: Instructed -01/23/2012 14:50 Declared In Start-up Variance from Target: 217740 MIN 00:29 HR:MIN Estimated Sync Time: 01/23/2012 15:15 Cold Start 01/23/2012 14:58 GT1 GT2 Hot Start GT 1: 0.9 MW 1 \$ Cust Perm GT 2: 99.7 MW GT 2 GT 2 * 1 Ready Start STG: 146.9 MW Start Lead Synch Lead EM-TF- G Bkr CI 1 Estimate: 5 Estimate: 15 Ð Actual: 0 Start Steam Actual: Turbine Hold at 3000 Estimate: 20 Estimate: 90 GT 1 GT 1 Actual: 1 Actual: 5 Start Lag Synch Lag 5 Estimate: Estimate: Actual: Actual: ST STG 10 % STG Release Hold at 3600 Roll to 3600 Load Hold Forward Flow to Dispatch Synch ST Estimate: 5 Estimate: 5 Estimate: Estimate: 30 Estimate: 60 Estimate: 10 Actual: 0 2 Actual: Actual: Actual: Actual: Actual: 2 Declared Released 🛛 🔶 Key: 01/23/2012 14:56 Equip Off Step Not Complete Step in Progress TM Help File Pre-Start HRSG Pre-Start Operations Step/Permissive Complete; Equip On

OSIsoft. USERS CONFERENCE 2013


€ @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

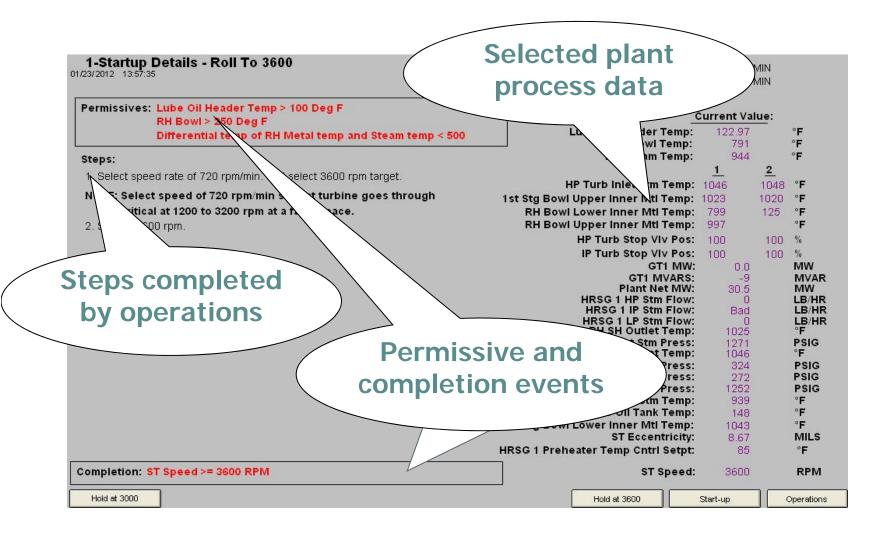
OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

Estimate:

Actual:

5 MIN


0 MIN

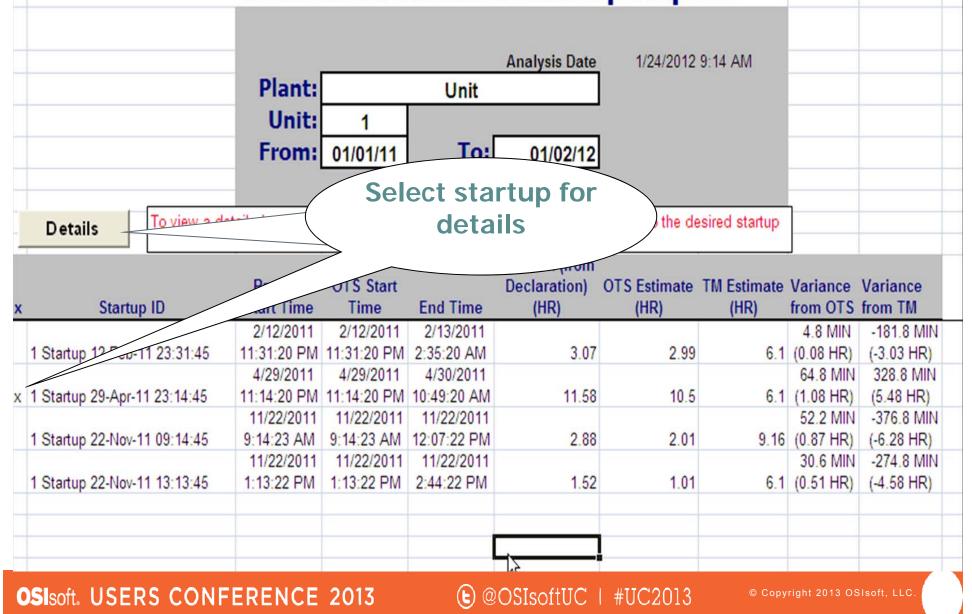
1-Startup Details - Roll To 3600 01/23/2012 13:57:35

RH Bowl Lower Inner Mtl Temp: RH Bowl Upper Inner Mtl Temp: HP Turb Stop VIv Pos: IP Turb Stop VIv Pos: GT1 MW: GT1 MVARS: Plant Net MW: HRSG 1 HP Stm Flow:	122.97 791 944 1046 1023 799 997 100 100 -9 30.5 0		°F °F °F °F °F % MWW MVAR MWW
HP Turb Inlet Stm Temp: t Stg Bowl Upper Inner Mtl Temp: RH Bowl Lower Inner Mtl Temp: RH Bowl Upper Inner Mtl Temp: HP Turb Stop VIv Pos: IP Turb Stop VIv Pos: GT1 MW: GT1 MW: Flant Net MW: HRSG 1 HP Stm Flow:	1046 1023 799 997 100 100 -9 30.5	2 1048 1020 125 100	°F °F °F °F % % MW MVAR
t Stg Bowl Upper Inner Mtl Temp: RH Bowl Lower Inner Mtl Temp: RH Bowl Upper Inner Mtl Temp: HP Turb Stop VIv Pos: IP Turb Stop VIv Pos: GT1 MW: GT1 MVARS: Plant Net MW: HRSG 1 HP Stm Flow:	1046 1023 799 997 100 100 -9 30.5	1048 1020 125 100	°F °F °F % MW MVAR
t Stg Bowl Upper Inner Mtl Temp: RH Bowl Lower Inner Mtl Temp: RH Bowl Upper Inner Mtl Temp: HP Turb Stop VIv Pos: IP Turb Stop VIv Pos: GT1 MW: GT1 MVARS: Plant Net MW: HRSG 1 HP Stm Flow:	1023 799 997 100 100 0.0 -9 30.5	1020 125 100	°F °F °F % MW MVAR
RH Bowl Lower Inner Mtl Temp: RH Bowl Upper Inner Mtl Temp: HP Turb Stop VIv Pos: IP Turb Stop VIv Pos: GT1 MW: GT1 MVARS: Plant Net MW: HRSG 1 HP Stm Flow:	799 997 100 100 0.0 -9 30.5	125 100	°F °F % % MW MVAR
RH Bowl Upper Inner Mtl Temp: HP Turb Stop VIv Pos: IP Turb Stop VIv Pos: GT1 MW: GT1 MVARS: Plant Net MW: HRSG 1 HP Stm Flow:	100 100 -9 30.5		% % MW MVAR
IP Turb Stop VIv Pos: GT1 MW: GT1 MVARS: Plant Net MW: HRSG 1 HP Stm Flow:	100 0.0 -9 30.5		% MW MVAR
GT1 MW: GT1 MVARS: Plant Net MW: HRSG 1 HP Stm Flow:	0.0 -9 30.5	100	MW MVAF
GT1 MVARS: Plant Net MW: HRSG 1 HP Stm Flow:	-9 30.5		MVAR
Plant Net MW: HRSG 1 HP Stm Flow:	30.5		
HRSG 1 IP Stm Flow:	Bad		LB/HR LB/HF
HRSG 1 LP Stm Flow: HRSG 1 RH SH Outlet Temp: HRSG 1 HP SH Out Stm Press:	0 1025 1271		LB/HF °F PSIG
HRSG 1 HP SH Outlet Temp:	1046		°F
HRSG 1 IP SH Press: IP Turb Inlet Stm Press: HP Turb Inlet Stm Press:	324 272 1252		PSIG PSIG PSIG
IP Turb Inlet Stm Temp: Lube Oil Tank Temp:	939 148		°F °F
	1043		°F
			MILS
SG 1 Preheater Temp Cntrl Setpt:	85		°F
ST Speed:	3600		RPM
	Lube Oil Tank Temp: st Stg Bowl Lower Inner Mtl Temp: ST Eccentricity: RSG 1 Preheater Temp Cntrl Setpt: ST Speed:	IP Turb Inlet Stm Temp: 939 Lube Oil Tank Temp: 148 st Stg Bowl Lower Inner Mtl Temp: 1043 ST Eccentricity: 8.67 RSG 1 Preheater Temp Cntrl Setpt: 85	IP Turb Inlet Stm Temp: 939 Lube Oil Tank Temp: 148 st Stg Bowl Lower Inner Mtl Temp: 1043 ST Eccentricity: 8.67 RSG 1 Preheater Temp Cntrl Setpt: 85 ST Speed: 3600

OSIsoft. USERS CONFERENCE 2013

(e) @OSIsoftUC | #UC2013

OSIsoft. USERS CONFERENCE 2013

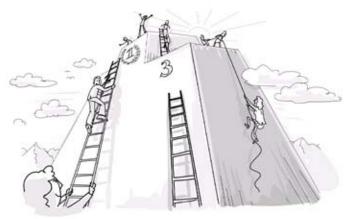

(e) @OSIsoftUC | #UC2013

Tracking Start-ups using PI Batch

Design Requirements:

- Well-defined start and end points
 - Valve open/closed
 - Flow > set limit
 - Pump on/off
- Consistently-followed procedures

€ @OSIsoftUC | #UC2013



		1/24/2012 9:14 AM			
Plant:		Unit			
Unit:	1				
	-	Duration (HR)	OTS Estimate (HR)	Variance from OTS	
Startup ID	1 Startup 29-Apr-11 23:14:45	11.58		64.8 MIN (1.08 HR)	
OTS Start Time	4/29/2011 11:14:20 PM				
End Time	4/30/2011 10:49:20 AM				
1st Stg Mtl Temp					
Phase	Start Time	End Time	Duration	TM Estimate	Variance from TM
CW Pmp	4/28/2011 12:06				
FD Fan	4/29/2011 22:08				
Startup	4/29/2011 23:14	4/30/2011 10:49:20 AM	695 MIN (11.58 HR)	366 MIN (6.1 HR)	329 MIN (5.48 HR)
Station Air Sys	4/30/2011 0:39				
Condenser	4/30/2011 0:45	4/30/2011 2:05	80 MIN (1.33 HR)	0 MIN (0 HR)	80 MIN (1.33 HR)
Build Drum Pressure	4/30/2011 1:13	4/30/2011 1:14	0.08 MIN (0 HR)	180 MIN (3 HR)	-179.92 MIN (-3 HR)
Establish Vacuum	4/30/2011 1:14	4/30/2011 2:05	51 MIN (0.85 HR)	60 MIN (1 HR)	-9 MIN (-0.15 HR)
Satisfy Steam Conditions	4/30/2011 1:14	4/30/2011 2:02	48 MIN (0.8 HR)	30 MIN (0.5 HR)	18 MIN (0.3 HR)
Boiler	4/30/2011 2:01	4/30/2011 2:02	0.08 MIN (0 HR)	0 MIN (0 HR)	0.08 MIN (0 HR)
Turbine	4/30/2011 2:05	4/30/2011 2:28	23 MIN (0.38 HR)	0 MIN (0 HR)	23 MIN (0.38 HR)
Condenser	4/30/2011 2:28	4/30/2011 3:43	75 MIN (1.25 HR)	0 MIN (0 HR)	75 MIN (1.25 HR)
Establish Vacuum	4/30/2011 2:28	4/30/2011 3:43	75 MIN (1.25 HR)	60 MIN (1 HR)	15 MIN (0.25 HR)
Boiler	4/30/2011 3:25	4/30/2011 3:58	33 MIN (0.55 HR)	0 MIN (0 HR)	33 MIN (0.55 HR)
Satisfy Steam Conditions	4/30/2011 3:25	4/30/2011 3:58	33 MIN (0.55 HR)	30 MIN (0.5 HR)	3 MIN (0.05 HR)
Turbine	4/30/2011 3:58	4/30/2011 7:12	193.25 MIN (3.22 HR)	0 MIN (0 HR)	193.25 MIN (3.22 HR)
Roll to 2400	4/30/2011 4:10	4/30/2011 4:18	7.75 MIN (0.13 HR)	10 MIN (0.17 HR)	-2.25 MIN (-0.04 HR)
Achieve Stm Conditions for Hold	4/30/2011 4:18	4/30/2011 10:49	391.08 MIN (6.52 HR)	10 MIN (0.17 HR)	381.08 MIN (6.35 HR)
Condenser	4/30/2011 7:12	4/30/2011 7:23	11 MIN (0.18 HR)	0 MIN (0 HR)	11 MIN (0.18 HR)
Establish Vacuum	4/30/2011 7:12	4/30/2011 7:23	11 MIN (0.18 HR)	60 MIN (1 HR)	-49 MIN (-0.82 HR)
	1/20/2014 7 02	1/20/2014 0.50	00.05.101 (4.10.10)		00.05.1411.44.10.112

OSIsoft. USERS CONFERENCE 2013

(e) @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC

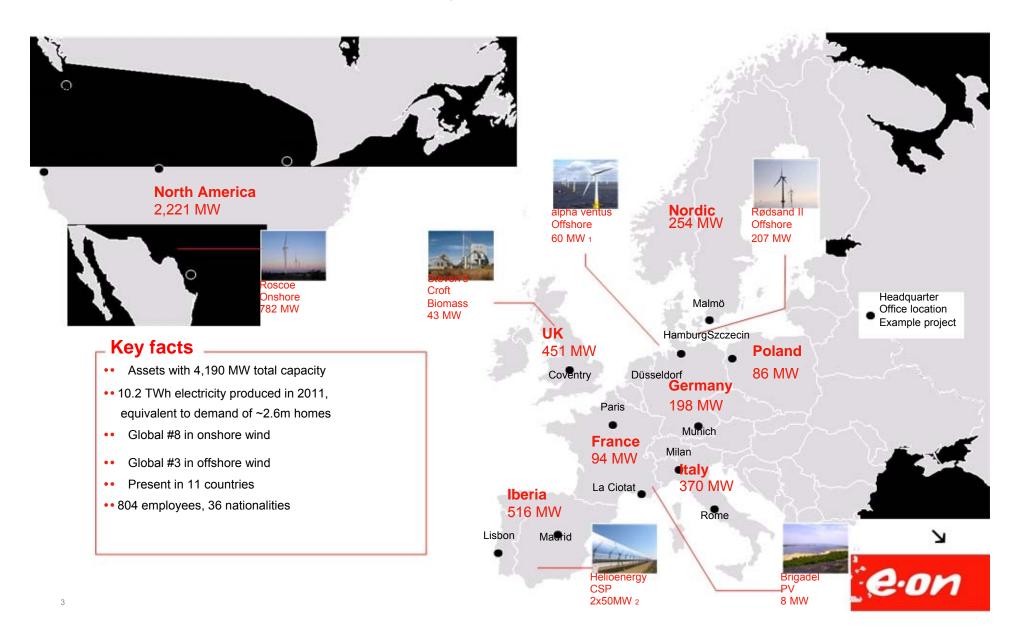
Let's climb the performance ladder to the top

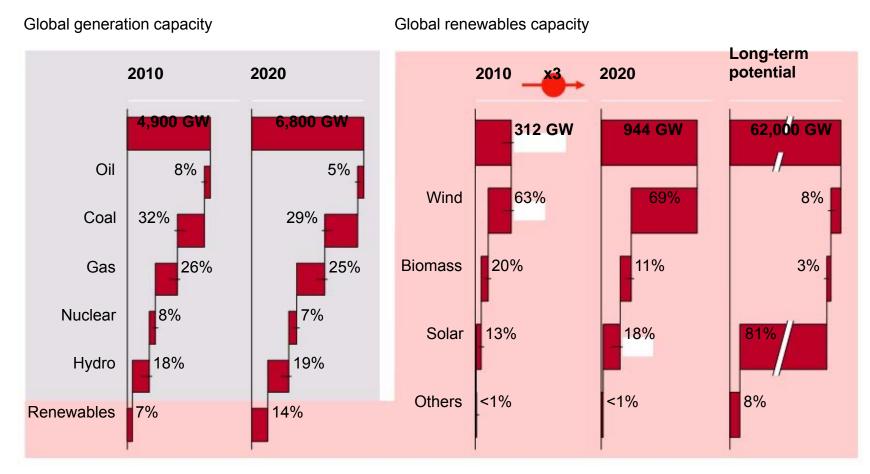
Next Generation SCADA

Ensuring the real-time monitoring and control of rapidly growing Portfolio of Renewable Assets

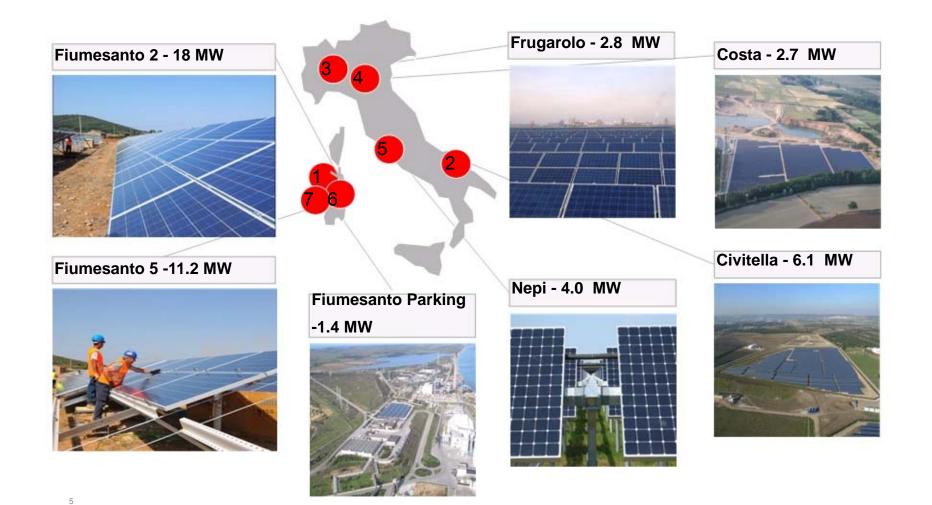
Uwe Fischer

Head of Asset Information Systems E.ON Climate&Renewables GmbH (EC&R)

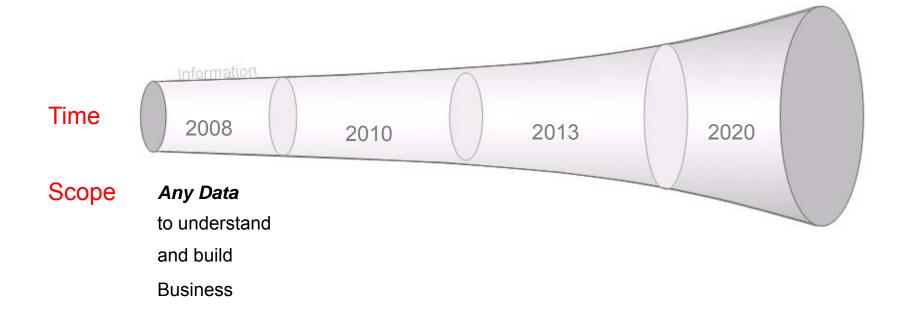



From "an experiment" to "a pillar of E.ON's future"

EC&R currently operates a geographically balanced portfolio of more than 4.2 GW renewables capacity in Europe and North America


Renewables have significant worldwide potential: Installed capacity is expected to again grow 3-fold by 2020

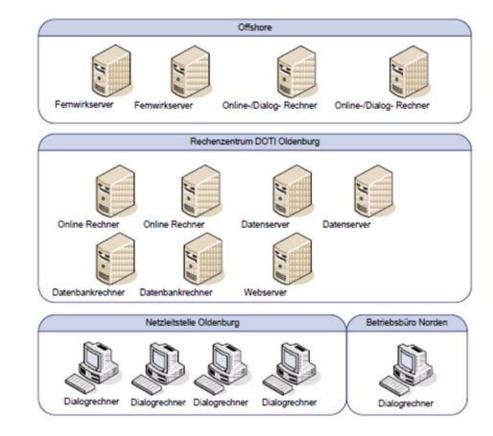
Sources BNEF, IHS Emerging Energy Research (July 2011 Base Case), World Energy Council



In Italy, 7 parks with a total capacity of ~46 MW were commissioned within only 1.5 years, but 120MW/year in US

Evolving challenges in the SCADA Architecure

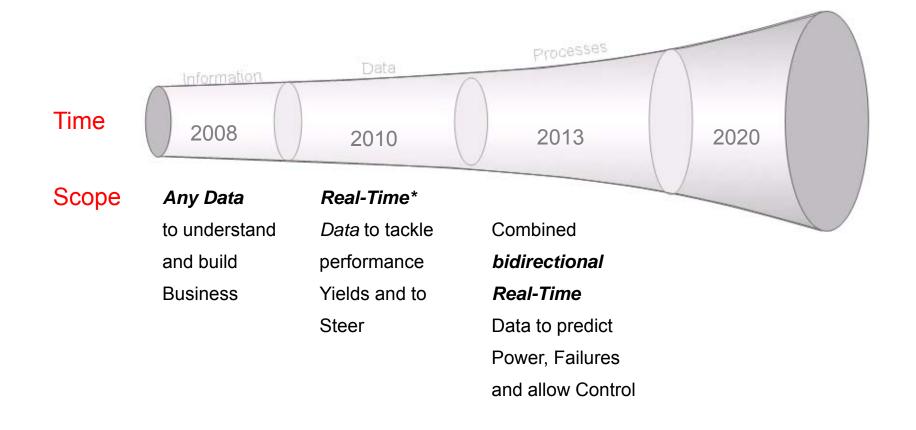
medium OPC, USB, email ...


System Landscape for 12 Windturbines in 2008

Each Windpark was built autark and enabled to perform the local required operation.

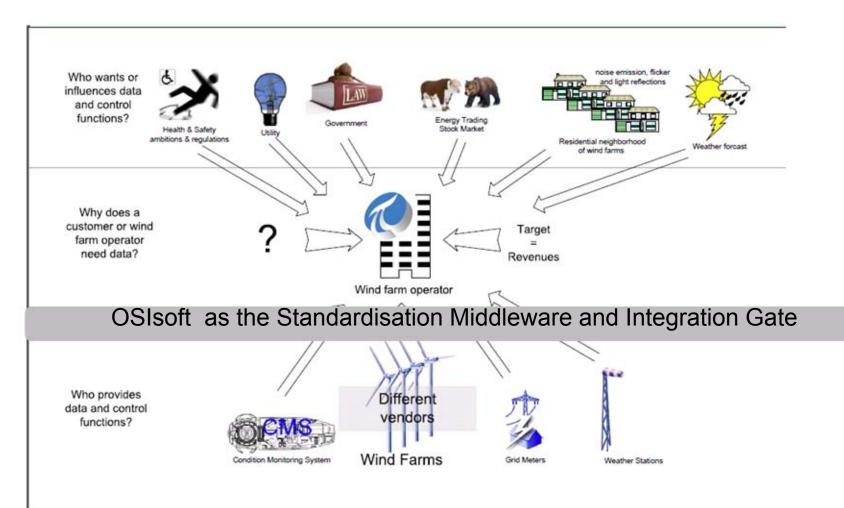
- Data Collection
- Reporting

8


- Data Visualisation

More servers than wind technicians!

Evolving challenges in the SCADA Architecure

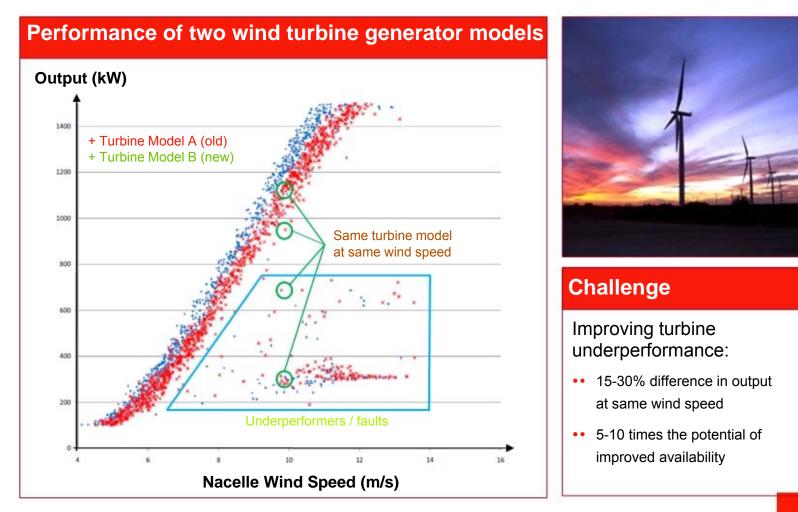

medium

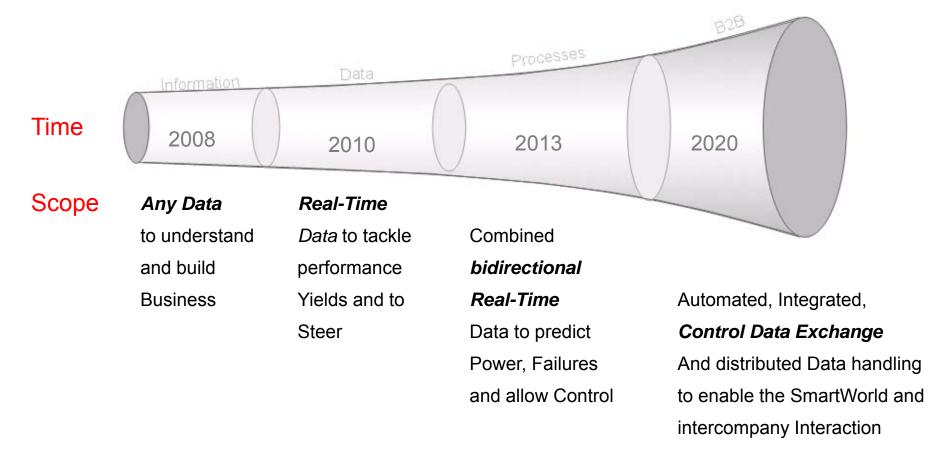
Paper, email ... OPC, IEC... OPC, SOAP

eon

*Chose OSIsoft PI System in 2010

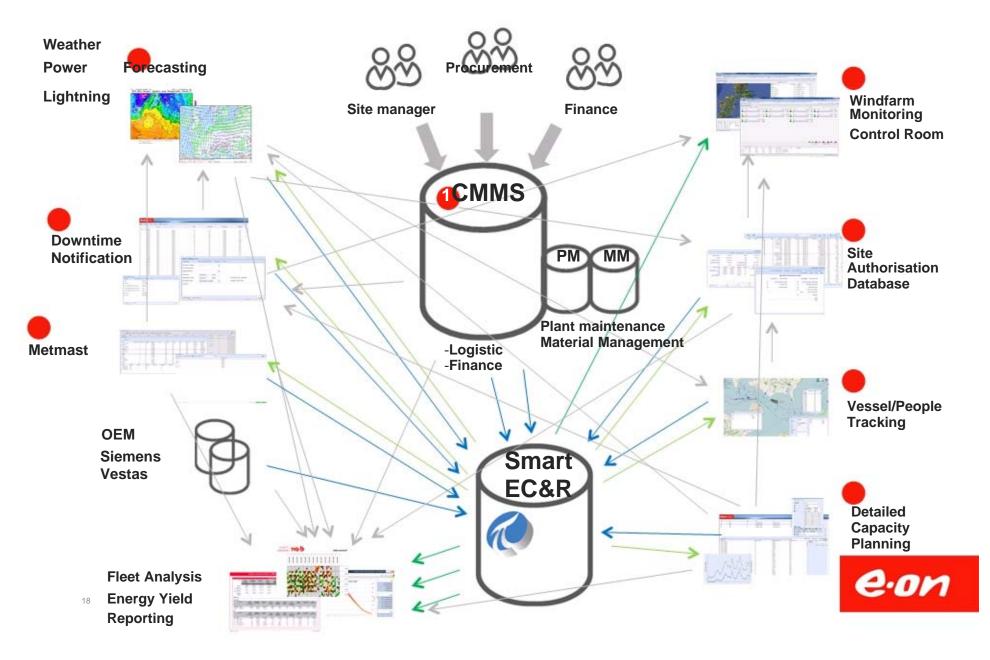
A Windfarm Operator is faced with different requests from various stakeholders and needs customized info




-

At 98% availability the challenge is to find the next challenge – compare 3,000 turbines

Evolving challenges in the SCADA Architecure


medium

Paper, email ... OPC, IEC... OPC, SOAP

Osisoft PI, B2B Integration (SOAP...

Multi HMI's and Single Data Base - Interaction of Tools

Scope of EC&R's multi Dimension SCADA -> -> SmartECR

- Extensively standardized Systems for all decentral SCADA Assets (~200 independent Data Feed from Wind, Biomass, CSP and PV Assets)
- **Single Datacenter** and centralized Security Management (24/7 support from European and American staff)
- Single Real Time Database sized for ~1,000,000 Datapoints per second (hourly Data Cleaning, Export and Reporting to enhance speed)
- Data Exchange Infrastructure with all state of the art capabilities (hourly exchange of Production and 72h Forecast Data with Trading and external service providers)

• In-house Application Development to gain the value from the Data and the Engineering and Operation expertise

(Business Process specific Screens and Tools as a competitive advantage)

SmartECR: Customized Global Business Processes on a Central PI Data Foundation

Connected Supply Chain – PI Cloud Connect

"Allow customers to furnish data from a system they own so they can be better served by their vendors." Dr. Pat Kennedy

PI Cloud Connect goal: Provide a simple, secure framework for key stakeholders and suppliers to obtain the data they need.

Infrastructure for the Connected Supply Chain EQUIPMENT

Leveraging the "Power of PI" as a Third Party NOC Platform

Presented by Steve Hanawalt, Power Factors LLC

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.

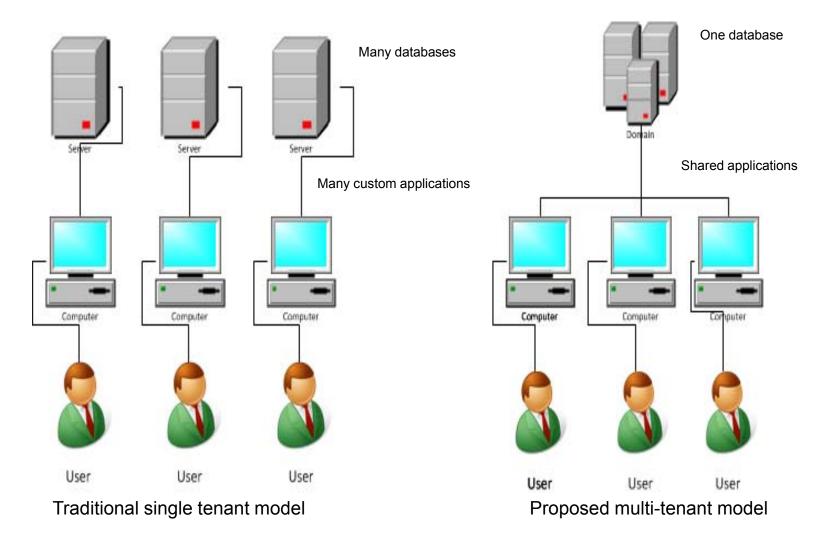
Outline

- Power Factors Overview
- The Problem
- A Proposed Solution
- How it Works
- Features & Benefits
- Technical Issues
- Summary and Next Steps

(e) @OSIsoftUC | #UC2013

Power Factors Overview

- Headquartered in San Leandro, California
- 50 years/30 GW fossil power O&M experience
- 12 years/1 GW solar power O&M experience
- Providing services to over 3 GW of solar projects in the US, Europe and South America
- Solar Power 3rd Party NOC service provider


The Solar Power Problem

Same	Different
 Generates electricity Grid interconnection requirements Needs to be maintained and monitored Lots of data 	 Spans a vast size and customer class Fuel is free Labor drives O&M phase economics Traditional monitoring system deployment methods too costly

Solving the Problem - Technology

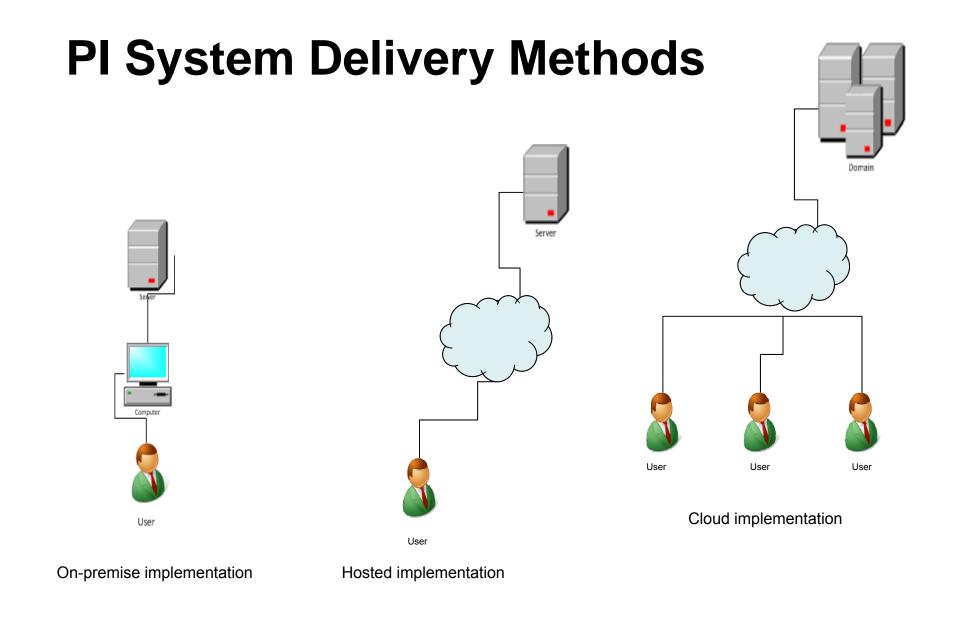
- How do we drive labor out of the equation?
 Technology and automation
- How do we make IT cost effective for solar?
 Reduce the per customer cost of implementation
- How do we reduce IT implementation costs?
 - Change the way we deliver and price technology

Proposed Solution

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

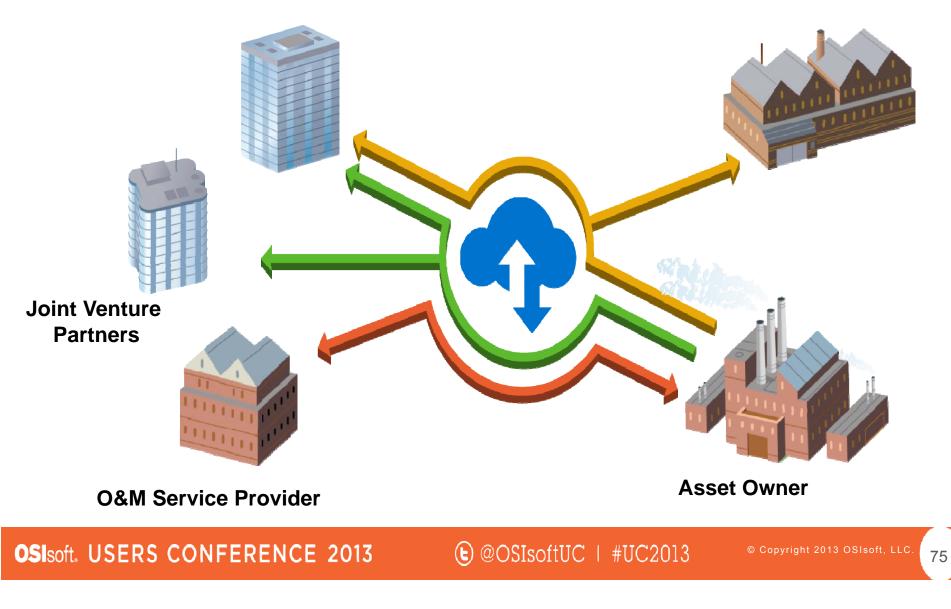
Hosted Solution: Down the hall, or 2000 miles away—why should it matter?

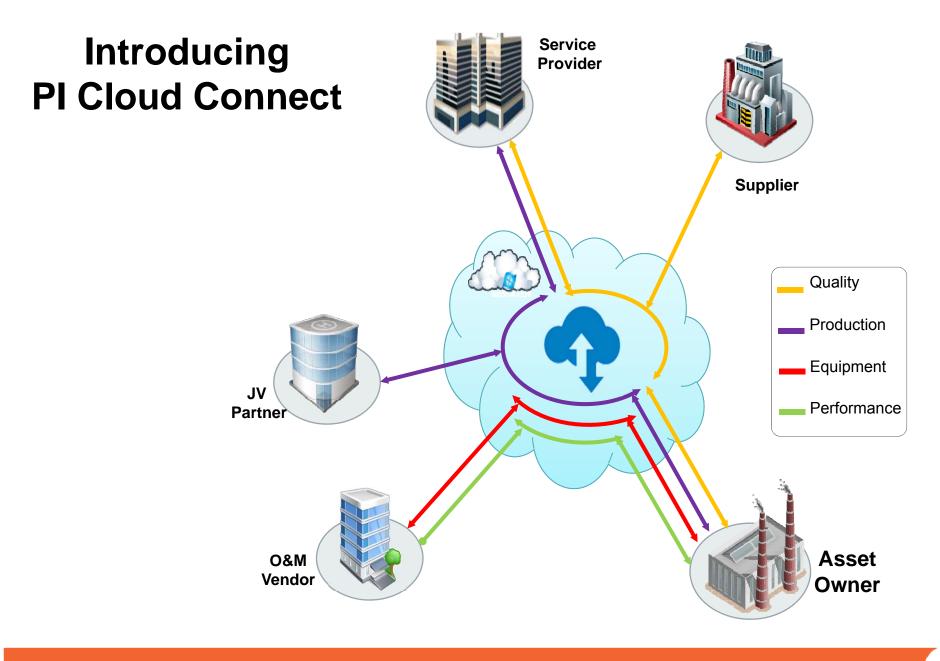

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

Value Proposition

- Multi-tenant model brings the benefits of the PI System at a lower cost and risk model than a traditional implementation
- Tenants benefit from best-in-class analytics/performance optimization
- Tenants benefit from services that may be too costly to support internally
 - 24/7 Help Desk, high availability implementation, large pool of technical support

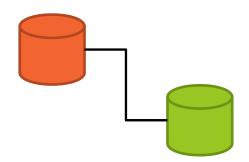

OSIsoft. USERS CONFERENCE 2013


e @OSIsoftUC | #UC2013

The First Step - PI Cloud Connect

Service Providers

Supplier


OSIsoft. USERS CONFERENCE 2013

© @OSIsoftUC | #UC2013

Challenges and Opportunities

Data flow

- Connecting publishers and subscribers
- Infrastructure requirements
- Data synchronization
 - Data model
 - Meta data
 - Contract entitlements
 - Integration with other applications

e @OSIsoftUC | #UC2013

Summary

- New ways of deploying technology delivers the PI System value proposition to new categories of asset classes
- Power Factors is leading the deployment of the PI System to the solar marketplace
- Power Factors PV performance and PI System expertise rapidly delivers hosted solutions at a lower TCO

Brought to you by

OSIsoft. USERS CONFERENCE 2013

€ @OSIsoftUC | #UC2013

© Copyright 2013 OSIsoft, LLC.