Getting Ready for Real-time and Advanced Analysis

Mark Knox, Senior Systems Engineer November 2, 2016

A Journey of Enabling Rich Displays

Real-time monitoring

Retrospective analysis

Image: SAS Visual Analytics from www.sas.com

A Journey of Enabling Rich Displays

Real-time monitoring

Retrospective analysis

Agenda: 4 Stages to Get Value

- Get started
 - Collect raw data: adding a new data source
- 2. Maneuver the turns
 - Metadata: applying context
- 3. Achieve fast insights
 - Visualize and find the info
- 4. The next level and the finish line
 - Enable business analytics

Example: Find the Winning Formula

Lap around the Circuit of the Americas

Get started with raw data

Example: Find the Winning Formula
Lap around the Circuit of the Americas

Adding a New Data Source

Challenges

Can the data be brought in the PI System?

Is this the most effective and efficient way to do this?

Collecting Data: Key Questions

- 1. What is the device?
- 2. What type of data is it?
 - Number of data streams, frequency of updates, necessary fidelity

Vendor specific?

- Standard
 - OPC, Modbus, ODBC/OLEDB connectivity, RDBMS embedded
- Non-Standard
 - OSIsoft Development & Technical Support

Ex: Answering Questions

- 1. What is the device?
 - Telemetry device collects data as the cars go around the racetrack
- 2. What type of data is it?
 - Many data streams, high frequency
 Need high fidelity information
- 3. What type of protocol does this device support?
 - Non-Standard: Need to access data via the web server
- 4. Solution:
 - PowerShell script to query source data
 - Parse text files with PI Interface for Universal File Loader (UFL)

Lap Times		
Lap 1		_
DriverId	Position	Time
alonso	1	1:34.494
vettel	2	1:35.274
webber	3	1:36.329
hamilton	4	1:36.991
petrov	5	1:38.084
michael_schumacher	6	1:38.633
rosberg	7	1:39.139
massa	8	1:39.979
buemi	9	1:40.611
button	10	1:40.998
perez	11	1:41.433
alguersuari	12	1:41.876
maldonado	13	1:42.255
resta	14	1:42.808
trulli	15	1:43.553
kovalainen	16	1:44.276
heidfeld	17	1:45.164
sutil	18	1:46.107
liuzzi	19	1:46.737
barrichello	20	1:47.077
glock	21	1:47.556
karthikeyan	22	1:48.183
ambrosio	23	1:48.573
kobayashi	24	1:57.590
Lap 2		
DriverId	Position	Time
alonso	1	1:30.812
vettel	2	1:30.633

Lup Z		
DriverId	Position	Time
alonso	1	1:30.812
vettel	2	1:30.633
webber	3	1:30.827
hamilton	4	1:31.189
petrov	5	1:32.394
michael_schumacher	6	1:32.839

Ex: Choosing the Best Technology

New option: PI Connector for UFL

No more temporary text files needed: write directly to the UFL connector Rest endpoint.

- Benefits
 - Automatically creates tags, elements/attributes
 - Easier configuration
 - No scan class
 - Creates event frames

Now you implement your data collection solution!

Maneuver meta data

Example: Find the Winning Formula
Lap around the Circuit of the Americas

Context adds meaning to your data

Challenges:

Meta data is needed to transform raw data into information.

Speed 107 Driver: Hamilton mi/hr
Austin, TX

- Important: Define the use case
- → Gives you focus on what meta-data is relevant to include

Meta Data: Key Questions

- What meta data will put data into context?
- 2. What are the data characteristics? How often does it update?
 - Often Store the data in a PI Point
 - Not often/Never
 Data reference via PI AF
- 3. Where is the meta data stored?
 - File, Web Site, Relational Database, etc

Ex: Meta Data: Add the Racing Team

- 1. What context will help the user?
 - Want to compare by car constructor (team)

- 2. What are the data characteristics? How often does it update?
 - Many data streams. History is not required. Data type is string.
 Static information

- 3. Where is the meta data stored?
 - Web site

- PI Interface for RDBMS
- PowerShell to pull in data from the web into my SQL Server and use a linked AF Table
- Import the table from the web into an internal AF Table

Visualization & fast insights

Example: Find the Winning Formula

Lap around the Circuit of the Americas

The Right Visualization: Consumable Data

Table view

Process view

Geospatial view

Visualization: Key Questions

- 1. How do you view data today?
- 2. What tools do you want to use?
 - Excel, web browser

3. Pro tip: Can you sketch what your ideal view looks like?

Ex: Real-Time Monitoring with PI Coresight

Help Users Find Data

In addition to a flat list of drivers

Elements

Some users may want to search by team

Elements

Organize Data in Multiple Views

Create views by group, geography, or process

Options:

- PI System Explorer
- PI Builder
- AF SDK

Strong finish: Business analytics

Example: Find the Winning Formula
Lap around the Circuit of the Americas

The Larger Business Landscape

Business analytics blends multiple data sets to support your strategy.

Business Analytics: Key Questions

- Which tools do you want to use?
- Do you have a data warehouse?
- What decision are you driving toward?
 How does this add business value?
- What data sets would support that decision?
 Operational, financial, market

PI Integrator for Business Analytics

Winning Strategies with Business Analytics Tools

Benchmarking

Fleet-wide performance comparisons

Large multivariate analysis

Image: SAS Visual Analytics from www.sas.com

Summary

Example: Find the Winning Formula
Lap around the Circuit of the Americas

Set Your Team Up for Success

Understand the use case
Understand the users
Choose the technology that best fits their needs

Resources

- PI Connector for UFL
- PI Coresight
- PI Integrator for Business
 Analytics

- Master PI
- PI Developers Club

Contact Information

Mark Knox

mknox@osisoft.com

Senior Systems Engineer

OSIsoft, LLC

28

Questions

Please wait for the microphone before asking your questions

Please remember to...

Complete the Survey for this session

Thank You

